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Hidden Markov Models (HMMs) have been shown to be a flexible tool for modelling complex
biological processes. However, choosing the number of hidden states remains an open question
and the inclusion of random effects also deserves more research, as it is a recent addition to
the fixed effect HMM in many application fields. We present a Bayesian mixed HMM with an
unknown number of hidden states and fixed covariates. The model is fitted using Reversible
Jump Markov Chain Monte Carlo (RJMCMC), avoiding the need to select the number of
hidden states. We show through simulations that the estimations produced are more precise
than those from a fixed effect HMM and illustrate its practical application to the analysis of
DNA copy number data, a field where HMMs are widely used.
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1. Introduction

DNA copy number alterations (CNAs) are events produced by a failure in the
replication machinery of the genome that result in a change in the number of
copies of a particular chromosome region. These alterations have been related to
a number of diseases, in particular to cancer. Amplifications (copy number gains)
of oncogenes produce tumour activation (see [1, 2]), while deletions (copy number
losses) can produce the inactivation of tumour suppressor genes.

Several techniques have been developed to measure genomic copy numbers.
Array-based Comparative Genomic Hybridization (aCGH) and Single Nucleotide
Polymorphism arrays (SNP arrays) are probably the most widely used (see [3], [4]
and [5] for a review of the different platforms). The data obtained, after proper nor-
malization (see for example [6, 7]), are log2 ratios of color intensities for a number
of genomic regions, and the spatial location of these points (often called probes)
and their length depend on the particular microarray platform. The observations
are expected to present some correlation, as alterations occur in contiguous chro-
mosomal regions, and this dependence will be stronger the closer two particular
observations are in the genome.

There are a number of methods available for the analysis of these data. Some of
them use different segmentation techniques to identify breakpoints, such as DNA-
copy from [8], HaarSeg from [9] or GADA from [10]. Most of these methods only
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identify segments with the same copy number, but do not assign copy numbers
to those regions. Hidden Markov Models (HMMs) have been used extensively for
aCGH and SNP analysis. [11] were the first to apply them to this problem and
soon others proposed some improvements, such as the non-homogeneous HMM
(NH-HMM) of [12], the robust HMM of [13], the continuous-index HMM of [14] or
the NH-HMM with an unknown number of states of [15] (this algorithm, named
RJaCGH, was shown to perform better than the alternatives and is the basis for
the model presented in this paper). Furthermore, there are specific HMMs for some
microarray platforms, such as quantiSNP from [16], pennCNV from [17] or PICNIC
from [18].

In typical experiments the researcher has to analyze a set of arrays correspond-
ing to different individuals that can show a high level of heterogeneity. Most of the
existing methods analyze each of them independently, while a few use multivariate
models, like the multivariate version of GADA by [19]. In general terms, fitting
the same model to all of the arrays will be very restrictive while fitting a different
model will be time consuming and will result in a huge number of parameters and
a loss of efficiency, therefore none of these options is fully satisfactory. In this paper
we present an extension to RJaCGH, an NH-HMM with an unknown number of
states, that incorporates random effects. It allows us to model heterogeneity among
individuals while keeping the number of parameters to be estimated at a reasonable
amount. HMMs with random effects have received some treatment in the literature
and have been applied to a wide range of areas, other than the analysis of CGH
data: [20] introduce random effects for a particular type of HMMs called segmental
HMMs, while [21] gives a complete treatment for the frequentist approach. Several
applications include [22] a latent-state model with one random effect for modelling
animal behaviour, [23] a longitudinal model for metastatic brain tumour patients,
[24] a semiparametric model or [25] a semi-Markov switching linear mixed model.
From a Bayesian point of view, [26] presents a model with a random effect fitted by
Metropolis-Hastings step, and [27] fit a model with random effects per individual
and hidden state through Gibbs Sampler. [28] fit a hierarchical NH-HMM for lon-
gitudinal observations, [29] presents a model for the analysis of infectious disease
biomarkers and [30] describes several models for alcoholism.
For the analysis of aCGH data, [31] use a pseudolikelihood approach to fit an HMM
with random effects per array and chromosome.
All of these approaches have a fixed number of hidden states, that is, the researcher
must specify a priori the number of hidden states. This situation is unrealistic from
a biological point of view because, in the case of DNA copy number analysis, the
number of different aberrations can be very different in each individual. Alterna-
tively, models with a different number of hidden states can be run, so that the user
selects one of them a posteriori. However, the use of model selection criteria such
as AIC or BIC is not justified in HMMs, see the next Section.

In this paper we present an NH-HMM Reversible Jump (RJ) model for aCGH
data with random effects and an unknown number of states fitted through RJM-
CMC using Gibbs Sampler or Metropolis-Hastings. The use of Bayesian Model
Averaging (BMA) incorporates the uncertainty of model selection in the estima-
tion of the probabilities of alteration for each array/probe. This model allows us
to include the natural heterogeneity present in most cancer data while giving clear
biological interpretations to the parameters. The combination of an NH-HMM that
allows the inclusion of the effect on the distance between probes, the introduction
of random effects to reflect individual variability and the fact that the analyst does
not need to predefine the number of hidden states (nor choose it a posteriori) makes
this model a very valuable tool for the analysis of aCGH data.
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The next two Sections introduce the model and describe the algorithm. Then
results on simulated data are presented, showing that the model produces more
precise estimators, and on a real data example, helping to identify common regions
of copy number variation (CNVs). The supplementary material available online
contains the mathematical details of the Reversible Jump algorithm.

2. A Bayesian non-homogeneous HMM for aCGH data

RJaCGH [15] is an NH-HMM model with an unknown number of hidden states
(related to the different copy numbers) for the analysis of aCGH data. The observed
log2 ratios in a given array/chromosome are modeled using a mixture of normal
distributions and the Markov dependence structure reflects that neighbor probes
should share the same copy number (unless an abrupt change occurs). The distance
between probes (typically very variable depending on the microarray platform) is
incorporated into the model using transition functions between hidden states that
describe the probability of remaining in the same hidden state (that is, to share the
same copy number) as a decreasing function of the distance between two probes
(in base pairs and scaled between 0 and 1).

Different arrays and chromosomes are likely to contain a variable number of
aberrations, so fixing in advance the number of hidden states is not a realistic
assumption. Moreover, scenarios like stromal contamination or intratumoral het-
erogeneity can produce averaged non-integer copy numbers for some arrays; for
example in the case of a sample with only 75% of tumoral cells (a gain of 3 copies
would be seen as 0.75× 3).

Selecting the number of hidden states based on such popular measures as AIC
or BIC is not appropriate for HMMs, as their consistency has not been proved (see
[32, 33]; although a consistent method for many HMM models based on penalized
minimum distances has been developed by [32]). RJaCGH uses Reversible Jump
[34], a generalization of MCMC that can explore simultaneously the sample spaces
of several models and estimates the posterior distribution of models. RJ eliminates
the need for model selection through the use of BMA and incorporates the uncer-
tainty in model selection. The algorithm can use a Gibbs or Metropolis-Hastings
sampler, and incorporates delayed rejection ([35, 36]) and coupled parallel chains
([37]) to improve the estimation process.

If the number of hidden states cannot be fixed a priori for biological reasons,
there is no injective mapping between hidden states and copy numbers either. The
observed log-ratios for a set of probes with a given copy number may not be ap-
proximated accurately enough with a Gaussian distribution, but with a mixture of
Gaussian distributions. This means that more than one hidden state may corre-
spond to the same copy number if the distribution of its log ratios is complicated
enough. Instead of assigning each hidden state to a copy number, RJaCGH assigns
probabilities of alteration to each hidden state based on a normal reference µN ,
defined as the expected log-ratio for a normal copy number; a band is then formed
around it with WL,WG width and the probability of alteration is computed as
the probability for every state of drawing observations outside this region. This
window can be asymmetric (the expected loss of one copy is log2(1/2) and the
expected gain of one copy is log2(3/2)), but it might depend on the particular
dataset. Algorithm 1 summarizes the method.

Note that different values of WL,WG can be chosen for each array depending on
the purity of the DNA sample. Scaling the values of these windows by an estimation
of the percentage of tumoral cells can fix the problem of comparing copy numbers
of samples with different proportions of normal contamination.
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Algorithm 1: Fully probabilistic approach for state labelling

Input: normal reference: µN .
Input: window: WL,WG.
foreach state i do

Compute NI = (µN −WL, µN +WG) ;
P (i = Loss) = P (N(µi,σ2

i ) ≤ NI1) ;

P (i = Gain) = P (N(µi,σ2
i ) ≥ NI2) ;

P (i = Normal) = 1− P (i = Loss)− P (i = Gain) ;

end
Output: Matrix of probabilities of alteration for every hidden state.

3. A Bayesian Random Effects Model for HMMs

Let us consider a collection of A arrays with the same set of P probes in each of
them. We measure ya,p, the log-ratio intensity for the array a and the probe p. An
HMM for each array with k states is a bivariate stochastic process on (Y, S), which
is the vector of observed log ratios and the vector of unobserved hidden states. The
same HMM can be defined for all arrays and a random effect can be incorporated
on the means of the hidden states per array:

(Ya,p|Sa,p = j) ∼ N(µj + ba, σ
2
j ) (1)

where

ba ∼ N(0, σ2
b )

If the probe p is in the hidden state j for the array a, the observed ya,p follows a
normal distribution with a mean that depends on the hidden state plus another
mean that depends only on the array, and is the same for all the probes, regardless
of the state. The effect is to shift the log-ratios per array by the same amount, a
situation that is very typical in microarray experiments. σ2

b is the variance of the
random effects and σ2

j can be the same for all the hidden states, reducing to a
homoscedastic model.

The transition functions qi,j between two states i, j are:

qi,j(x) =
exp{−βi,j + βi,jx}∑k

m=1 exp{−βi,m + βi,mx}
(2)

where βi,j ≥ 0 ∀i, j and βi,i = 0 ∀i to ensure that the parameters are uniquely
defined. x is the distance between the two probes.

3.1. Distribution of the parameters

Let us consider the following priors, typical in mixture models [38]. The variance
of the random effects and the variance of the hidden states follow Inverse Gamma
distributions, the random effects and the means of the hidden states follow Gaus-
sian distributions and the parameters of the transition functions follow Gamma
distributions:
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Figure 1. Model with a random effect per array. Squares: random sequences; log-ratios (visible) and hidden
states (invisible). Light circles: random variables of main interest. Dark circles: hyperparameters.

σ2
b ∼ Γ−1(r1, r2)

ba ∼ N(0, σ2
b )

βi,j ∼ Γ(1, 1)

σ2
j ∼ Γ−1(κ, γ)

µj ∼ N(αµ, βµ)

We can make the posterior distributions less dependent on the priors, defining
hyperprior Gamma distributions for the hyperparameters r2 and γ:

r2 ∼ Γ(gb1, gb2)

γ ∼ Γ(g1, g2)

Figure 1 shows a graphical representation of the model.
We can set sensible values for the hyperparameters such as αµ = median(y),

βµ = range(y), k = 2, g1 = 0.2 and g2 = 1/range2(y) where y is the vector
obtained concatenating the log ratios of all the arrays. For gb1 a small value such
as 0.2 can be chosen, and for gb2 1/range2(y), as in [38]. Finally, for r1, a small
value such as 1 can also be selected. When we have a small number of arrays,
these values may have more influence on the posterior distribution of σ2

b .

If the sequence of hidden states were known, the likelihood would be the follow-
ing:
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L(y|k, s, µ, σ2, β, ba, σ
2
b ) =

N∏
a=1

v(sa,1)N(ya,1|µsa,1 + ba, σ
2
sa,1)×

P∏
p=2

qsa,p−1,sa,p(xp−1|β)N(ya,p|µsa,p + ba, σ
2
sa,p) (3)

where v is the distribution of the initial states. This likelihood is often referred
to as the complete likelihood in the literature. As we only observe the log-ratios,
we have to average over all possible hidden paths for the likelihood, obtaining what
is usually called the incomplete likelihood:

L(y|k, µ, σ2, β, ba, σ
2
b ) =

N∏
a=1

∑
s∈kP

(v(sa,1)N(ya,1|µsa,1 + ba, σ
2
sa,1)×

P∏
p=2

qsp−1,sp(xp−1|β)N(ya,p|µsa,p + ba, σ
2
sa,p)) (4)

Using conditional independence, the full conditional distributions (see [39] for an
introduction) for all the parameters can be computed; technically, we obtain these
distributions by multiplying the priors and the likelihood, keeping the relevant
parts involved for that particular term and identifying the resulting distributions
by their functional forms. Our particular choice of prior distributions results in
closed form expressions for the full conditional distributions, namely:

r2|. ∼ Γ(gb1 + r1, gb2 +
1

σ2
b

)

γ|. ∼ Γ(g1 + kκ, r2 +

K∑
j=1

σ−2
j

σ2
b |. ∼ Γ−1(r1 +N/2, r2 +

N∑
a=1

b2a/2)

µj |. ∼ N

 αµ
βµ

+
∑N
a=1Ba,j
σ2
j

−
∑N
a=1 na,jba
σ2
j

1
βµ

+
∑N
a=1 na,j
σ2
j

,
1

1
βµ

+
∑N
a=1 na,j
σ2
j



ba|. ∼ N

∑k
j=1

Ba,j−na,jµj
σ2
j

1
σ2
b

+
∑k

j=1
na,j
σ2
j

,
1

1
σ2
b

+
∑k

j=1
na,j
σ2
j


The conditional distribution of variances, in the case of the heteroscedastic and

homoscedastic models are:
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σ2
j |. ∼ Γ−1 (C1, C2)

with

C1 = κ+
n.j

2

C2 = γ +
1

2

N∑
a=1

B2
a,j + na,jb

2
a − 2ba

∑
p/sp=j

(ya,p − µj)


and σ2 follows an Inverse Gamma distribution:

σ2|. ∼ Γ−1 (C1, C2)

with

C1 = κ+
n..

2

C2 = γ +
1

2

N∑
a=1

(
B2
a. + na,.b

2
a − 2ba

∑
p

(ya,p − µSp)

)

where na,j is the sum of the probes in the array a with the hidden state j,

Ba,j =
∑

p/sp=j ya,p, B
2
a,j =

∑
p/sp=j (ya,p − µj)2 and n.j =

∑N
a=1 na,j .

It is more convenient to update βi,j , the parameters of the transition functions,
using a Metropolis move, because it is very complicated to sample from the conju-
gate distribution:

Given the values βi,j (i 6= j), we propose a candidate vector:

log βCi,j = log βi,j + εβi,j (5)

for all i, j = 1, . . . , k, i 6= j, where εβi,j ∼ N(0, τ2
β).

We accept the candidate with probability min(1, r), where:

r =

∏
i,j=1,...,k;i 6=j π(βCi,j)∏
i,j=1,...,k;i 6=j π(βi,j)

L(y|k, s, µ, σ2, ba, σ
2
b , β

C)

L(y|k, s, µ, σ2, ba, σ2
b , β)

∏
i,j=1,...,k;i 6=j

βCi,j
βi,j

(6)

τβ controls the magnitude of the jump to the next candidate and can be tuned to
obtain a probability of acceptance around 0.23, as suggested, for example, by [40].

There are several schemes for sampling from the distribution of hidden states.
The simplest one is probably local updating:

P (Sa,p = j|.) ∝ qsa,p−1,j(xp−1)
1

σj
exp

{
−(ya,p − µj − ba)2

2σ2
j

}
qj,sa,p+1

(xp) (7)
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For Sa,1, we replace qSa,0,j(x0) with v(j) and for Sa,P , we replace qj,Sa,P+1
(xj) with

1.

3.2. Reversible Jump algorithm

Our model does not assume a fixed number of hidden states, although for
computational convenience we fix a maximum number of hidden states K.
For each of the models Mk considered, we have a parameter vector θ(Mk) =
{µMk

, σ2
Mk
, βMk

, bMk
, σ2

b,Mk
, sMk

}
Reversible Jump allows us to jump between models using special moves. We use

birth/death and split/combine, which are commonly used in the mixture modelling
and HMM literature ([33, 38, 41]). A birth move consists in creating a new hidden
state, and a death move in deleting an existing hidden state. A split move consists
in taking an existing hidden state and dividing it into two, and the combine move
in taking two adjacent states and joining them. Full details can be found in the
supplementary material. Algorithm 2 shows the whole procedure using a Gibbs
sampler.

Algorithm 2: RJaCGH with random effects per array with Gibbs Sampler

Input: T: number of iterations.
Input: K: maximum number of hidden states.
Input: τβ: standard deviations of the random walk for updates within models.
Input: τsp,µ: parameter for the split move.

Input: µ(0)
. σ2(0)

. , β(0)
. , b(0)

. , σ
2(0)
b , s(0)

. , k(0): initial values for each model.
for t = 1 to T do

Gibbs Update: µ
(t)
k , σ

2(t)
k , s

(t)
k , b

(t)
k , σ

2(t)
b,k ;

Metropolis Update: β
(t)
k ;

Select and try Birth or Death with delayed rejection ;
Select and try Split or Combine ;

end
Output: Chain with samples from the joint distribution⋃

k{k} × (µk, σ
2
k, βk, bk, σ

2
b,k, sk)

If we want to use a Metropolis-Hastings (MH) sampler, conjugate priors do not
have to be used, so the priors for the variances can be simplified:

σj ∼ U(0, R)

σb ∼ U(0, Rσ2
b
)

where R = range(y) and Rσ2
b

can be a smaller value to prevent the variability
among arrays being higher than the variability among probes.

In addition, we do not need to sample from the distribution of hidden states
because the incomplete likelihood is used (see equation 4). We update the rest of
the parameters generating candidates with random walks:

µCi = µi + εµi (8)
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for all i = 1, . . . , k, where εµi ∼ N(0, τ2
µ).

log σ2C
i = log σ2

i + εσ
2

i (9)

log σ2C
b = log σ2

b + εσ
2
b

bCa = ba + εba

with auxiliary variables generated with normals:

εσ
2
b ∼ N(0, τ2

σ2)

εba ∼ N(0, τ2
µ)

The step sizes can be the adjusted in the same way as for τβ and the accep-
tance ratio for each parameter can be easily computed. The whole procedure is
summarized in algorithm 3.

Algorithm 3: RJaCGH with random effects per array with Metropolis-
Hastings and coupled chains

Input: NC: number of coupled chains.
Input: T: number of iterations.
Input: K: maximum number of hidden states.
Input: τµ, τσ2 , τβ: standard deviations of the random walk for updates within

models.
Input: τsp,µ: parameter for the split move.

Input: µ(.,0)
. , σ2(.,0)

. , β(.,0)
. , b(.,0)

. , σ
2(.,0)
b,. , k(.,0): initial values for each chain and

each model.
for t = 1 to T do

for h = 1 to NC do

Metropolis Update: µ
(h,t)
k , σ

2(h,t)
k , β

(h,t)
k , b

(h,t)
k , σ

2(h,t)
b,k ;

Select and try Birth or Death with delayed rejection ;
Select and try Split or Combine ;

end
Select two chains and try to swap them ;

end
Output: Cool chain with samples from the joint distribution⋃

k{k} × (µk, σ
2
k, βk, bk, σ

2
b,k)

3.3. Probabilities of alteration

The algorithm returns samples from the posterior distributions of the parameters
of each HMM (µ, σ2, β, b, σ2

b and s in the case of the Gibbs Sampler) for all the
models visited by the algorithm. Moreover, it returns samples from the posterior
distribution of the number of hidden states. We are particularly interested in the
probabilities for each array and each probe of belonging to any hidden state; prob-
abilities that can be obtained for each model using the Viterbi algorithm (see [42]).
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Furthermore, the probabilities for each hidden state of being a state of gain or loss
can be computed using algorithm 1 and all this information can be combined using
BMA, obtaining the following estimators of the probabilities of gain for a probe p
in an array a (informally expressed as P (Ya,p = G)):

P (Ya,p = G) =

K∑
m=1

P (M = m)

m∑
j=1

P (Ya,p ∈ Sj |m)P (Sj = G|m) (10)

That is, the uncertainty in the classification of probes into hidden states is incor-
porated, the uncertainty in the assignments of states into states of copy number is
included too and also the uncertainty in model selection. This methodology leads
to better estimators; there are theoretical results that state that, under certain
conditions, BMA estimators minimize the mean squared error (MSE) among point
estimators and that their predictive distribution is optimal (see [43] for details).
The probability of loss can be computed in a similar way.

3.4. Convergence

There seems to be no perfect method for checking convergence, specially for RJM-
CMC. Besides, as [37] states, these methods only can tell us if the chain has not
converged. In our experience, a careful design of the moves and good starting val-
ues can help reach convergence. In particular, techniques like delayed reaction and
coupled parallel chains can help the sampler to explore the state parameter easily,
helping to reach convergence. We have also observed that unrealistic initial values
for σ2

b can increase the number of iterations needed to attain convergence.

4. Results

4.1. Simulations

We generated 150 observations (probes) from 25 individuals (arrays) from a mixture
of 3 normal distributions (50 observations belonging to each of the groups) with
means µ = {−1.5, 0, 1.5} and variances σ2 = {1, 1, 1}. A random effect for each
individual was added to these means generating 25 observations from a normal
distribution centered in zero and with a variance chosen from 5 different values
σ2
b = {0.1, 0.25, 0.5, 0.75, 1}. 100 replicates were generated for each of these five

datasets with 150 ∗ 25 observations. We then ran four versions of RJaCGH: fitting
the same HMM to the 25 arrays using a MH sampler, fitting a different HMM
to each array using an MH sampler, fitting RJaCGH with a random effect per
array using MH sampler and also fitting RJaCGH using a Gibbs sampler. We
used a maximum of 6 states and ran the algorithm for 10, 000 samples as burn-
in and another 10, 000 for the inferences. For every replication we computed the
Mean Squared Error (MSE) of the 10, 000 samples as the average of the MSEs
in the estimation of each parameter (using the median) in each hidden state. We
also relabeled each hidden state as loss, normal or gain using a window of 0.75
(algorithm 1) and computed the MSE of estimating the probability for each probe
to be correctly classified. According to the model, these probabilities should be
0.77, 0.55 and 0.77 for loss, normal and gain.

Table 1 shows the results for the simulations (medians and IQR of the 100 repli-
cates). For the computation of the MSEs of the parameters of a 3-state HMM,
we only use the visits of the sampler to the model with 3 hidden states. The es-



July 31, 2011 11:10 Journal of Statistical Computation & Simulation RandomEffects

Journal of Statistical Computation & Simulation 11

Table 1. Results of the simulations.The values are medians of 100 replicates and the IQR is shown

in parenthesis. θ is the mean per hidden state and array (µ + b). The MSE are Mean Squared

Errors of the estimation of the parameters using the model with 3 states for the parameters and

Bayesian Model Averaging over all models for the probabilities of correct classification. For each

replication, they are the average of the MSE of each parameter and hidden state.

Same Model
σ2
b 0.1 0.25 0.5 0.75 1

MSE µ 0.004 (0.01) 0.017 (0.02) 0.066 (0.07) 0.088 (0.10) 0.174 (0.16)
MSE θ 0.092 (0.03) 0.267 (0.10) 0.509 (0.22) 0.783 (0.35) 1.108 (0.51)
MSE σ2 0.004 (0.00) 0.017 (0.02) 0.036 (0.03) 0.063 (0.04) 0.094 (0.06)
MSE σ2

b - - - - -
MSE PLoss 0.039 (0.01) 0.072 (0.03) 0.103 (0.04) 0.125 (0.04) 0.142 (0.05)
MSE PNormal 0.010 (0.00) 0.026 (0.01) 0.042 (0.02) 0.056 (0.02) 0.071 (0.02)
MSE PGain 0.040 (0.01) 0.066 (0.03) 0.099 (0.04) 0.112 (0.04) 0.146 (0.04)

Different Model
σ2
b 0.1 0.25 0.5 0.75 1

MSE µ 0.118 (0.05) 0.278 (0.11) 0.507 (0.24) 0.766 (0.36) 0.999 (0.45)
MSE θ 0.024 (0.01) 0.024 (0.01) 0.026 (0.01) 0.025 (0.01) 0.024 (0.01)
MSE σ2 0.018 (0.01) 0.018 (0.01) 0.018 (0.01) 0.018 (0.01) 0.018 (0.01)
MSE σ2

b - - - - -
MSE PLoss 0.061 (0.02) 0.078 (0.03) 0.102 (0.03) 0.121 (0.03) 0.129 (0.04)
MSE PNormal 0.026 (0.01) 0.036 (0.01) 0.051 (0.02) 0.069 (0.02) 0.082 (0.03)
MSE PGain 0.064 (0.02) 0.082 (0.03) 0.100 (0.03) 0.111 (0.03) 0.134 (0.04)

Random Effects Model (MH)
σ2
b 0.1 0.25 0.5 0.75 1

MSE µ 0.003 (0.01) 0.009 (0.02) 0.018 (0.03) 0.030 (0.07) 0.033 (0.07)
MSE θ 0.007 (0.00) 0.008 (0.00) 0.009 (0.00) 0.008 (0.00) 0.008 (0.00)
MSE σ2 0.000 (0.00) 0.000 (0.00) 0.000 (0.00) 0.000 (0.00) 0.000 (0.00)
MSE σ2

b 0.001 (0.00) 0.004 (0.01) 0.010 (0.04) 0.021 (0.05) 0.025 (0.08)
MSE PLoss 0.009 (0.01) 0.026 (0.02) 0.043 (0.02) 0.060 (0.03) 0.071 (0.03)
MSE PNormal 0.068 (0.01) 0.100 (0.02) 0.133 (0.04) 0.152 (0.03) 0.167 (0.03)
MSE PGain 0.008 (0.01) 0.025 (0.01) 0.041 (0.02) 0.055 (0.03) 0.070 (0.03)

Random Effects Model (Gibbs)
σ2
b 0.1 0.25 0.5 0.75 1

MSE µ 0.003 (0.01) 0.007 (0.02) 0.014 (0.03) 0.015 (0.04) 0.033 (0.07)
MSE θ 0.007 (0.00) 0.008 (0.00) 0.009 (0.00) 0.008 (0.00) 0.009 (0.00)
MSE σ2 0.000 (0.00) 0.000 (0.00) 0.000 (0.00) 0.000 (0.00) 0.000 (0.00)
MSE σ2

b 0.000 (0.00) 0.004 (0.01) 0.016 (0.05) 0.029 (0.06) 0.057 (0.17)
MSE PLoss 0.003 (0.00) 0.004 (0.00) 0.004 (0.00) 0.005 (0.00) 0.005 (0.01)
MSE PNormal 0.060 (0.01) 0.061 (0.01) 0.063 (0.01) 0.062 (0.01) 0.064 (0.02)
MSE PGain 0.003 (0.00) 0.003 (0.00) 0.004 (0.00) 0.004 (0.00) 0.005 (0.01)

timation of µ and θ, the mean + the random effect, fitting the same HMM and
fitting a different one are not optimal, showing that when there is variability in
the mean levels of the arrays they cannot be estimated accurately. The MSE for
the variance increases in the model with the same HMM when the random vari-
ance increases. The random effects model produces better estimations with both
samplers, although it shows some variability in the estimation of the variance of
the random effects when it is large. For the estimation of the classification error,
we have used BMA over all the HMMs fitted. Again, we can see that the random
effects model outperforms the other two, especially using the Gibbs Sampler.

4.2. Application to real tumour data

[44] present data from 44 breast tumours and compare frequencies of alteration to
several clinical variables. [42] analyze the data and compute common regions of
alteration, showing that a certain amount of heterogeneity among individuals is
present in this dataset, as expected in breast cancer. We have compared our three
approaches to these data to see if this heterogeneity implies that a different HMM
is needed for each array. So we ran 20, 000 MCMC runs (10, 000 of them as burn-in)
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for the model with the same HMM (s-HMM) and the model with an independent
HMM for each array (i-HMM) and 30, 000 MCMC runs (10, 000 of them as burn-in)
for the HMM with random effects (re-HMM) with a Gibbs sampler (as this model
is more complex and requires more iterations). The maximum number of hidden
states was 10.

Figure 2 summarizes the fits of the three models. The left panel shows the medi-
ans of the posterior distribution for the means of each hidden state. Both models,
s-HMM and re-HMM have selected 10 hidden states in all final iterations, and
the estimations are similar. Note that neither the re-HMM model nor the s-HMM
model seem to have a hidden state for homozygous deletions (zero copies of a gene);
while looking at the 44 fits of the i-HMM, some of them include two clear levels of
losses (1 and 0 copies). A closer inspection shows that these correspond to cases
with only one probe, thus the models that use information from all samples (s-
HMM and re-HMM) consider these points as outliers. The top right panel shows
the probabilities of the number of hidden states for the i-HMM averaged on the
44 arrays. On average, a typical array needs 3-5 states. Both s-HMM and re-HMM
use the maximum number allowed (10), but to widen this limit would lead to a
huge increase in computing time and no improvement in the estimations (data not
shown). The rest of the right panels show distributions for the variances and the
random effects.

The main differences in the s-HMM and re-HMM appear in the way that the
probabilities of alteration are computed for each probe. First, each hidden state
was classified as loss, neutral or gain using algorithm 1. The left panel of Figure 2
shows with black squares the hidden states with a maximum probability of being
classified as ’gains’, and with black triangles those with a maximum probability of
being classified as ’losses’. It can be seen that small differences in estimation may
lead to differences in probabilities of classification. The re-HMM classifies the fifth
hidden state as gain with a probability of 0.59, while the s-HMM gives it only 0.45,
although there was just a difference of 0.05 between the estimated means.

We next used BMA to obtain probabilities of alteration for each probe and
averaged them over all tumours. These probabilities can be seen in figure 3. It
shows the probability of aberration for each genomic region averaged over all 44
arrays. The three fits appear similar, but there are some important differences. For
example, there is a region at the beginning of chromosome 1 with a probability
of alteration of about 0.25 in re-HMM, but with a probability of only 0.12 in the
s-HMM. This is an area with well known CNVs, as listed in [45]. There is another
region in chromosome 5 with a probability of alteration in re-HMM of 0.3 and
only 0.14 in i-HMM that corresponds to the genes BIRC1 and SMA5, both flanked
by a CNV (see [45], Chrom5: 69,865,970,-70,533,749). NCF1 is another CNV (see
[46]) with a probability of alteration of 0.29 in re-HMM, 0.18 in s-HMM and 0.20
in i-HMM. There are further examples of differences in these probabilities that
show that the random effects model produces better estimations than the i-HMM,
because it borrows information from all the samples, and than the s-HMM, because
it allows for individual variability.

5. Conclusions and future directions

Random effects HMMs provide an elegant and concise way to model a wide range
of biological problems. In particular, they provide a natural framework for the
analysis of copy number data. We have shown through simulations that, in situ-
ations where individual variability is present, this model leads to more accurate
estimates. Copy number data from tumour samples contain multiple sources of
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Variance

Same HMM
Random HMM
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Random effects Variance
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Figure 2. Results of the fits for the three models for the Pollack et al. dataset. Left panel: Medians of the
posterior probability of the means of the hidden states. They have been labeled depending on the copy
number state with the maximum probability assigned by algorithm 1. Black triangles are states of loss,
grey circles are states of normal copy number and black squares states of gain. Right panel: starting from
the top, posterior probabilities for the number of hidden states in the model with independent HMMs
for each array, posterior distribution of the variances in the model with the same HMM for all arrays
and random effects HMM, posterior distributions for the random effects in the model with random effects
HMM and posterior distribution of the variance of the random effects in the model with random effects
HMM.

heterogeneity, such as contamination of normal cells in the sample, intratumoral
heterogeneity, or aneuploidy. The introduction of random effects in the HMM can
help in the correct modelling of these effects, leading to better probability estimates
of alteration and therefore helping in the identification of potential tumour driver
genes. In a real data example we have seen how the introduction of one random
effect refines these probabilities and helps to identify regions of CNV. Although
the interpretation of random effects is in this case straightforward, it is not the
case for the interpretation of the hidden states. They cannot simply be related to
individual copy numbers, and as we have seen in the example, values supported



July 31, 2011 11:10 Journal of Statistical Computation & Simulation RandomEffects

14 Rueda OM et al.

Position

Sa
m

e 
m

od
el

0.
4

0.
2

0
0.

2
0.

4
0.

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 X

Position

D
iff

er
en

t m
od

el
0.

4
0.

2
0

0.
2

0.
4

0.
6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 X

Position

R
an

do
m

 e
ffe

ct
s 

m
od

el
0.

4
0.

2
0

0.
2

0.
4

0.
6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 X

Figure 3. Probabilities of alteration for Pollack et al. Each panel shows the probability of alteration (gains
and losses) for a given model (same HMM model for all arrays, different HMM model and random effects
HMM) over the genome. These probabilities are averaged over all HMM models with a different number
of hidden states and over all arrays.

by just a few observations in a few samples are not guaranteed to form their own
hidden state. This, however, is not a major problem if we want to estimate prob-
abilities of gain/loss instead of estimating absolute copy numbers (something that
simply cannot be done with aCGH data). More importantly, this situation stresses
the danger of using HMMs with a fixed number of states, and it also emphasizes
the big influence that the priors can have in the posterior distributions of these
models (see [38]). RJMCMC provides a way to deal with these issues and improve
estimation averaging predictions from HMMS with a different number of hidden
states.
This model can be expanded in several interesting ways to incorporate different
sources of variability. A random effect for the means in each hidden state can be
added for situations where each individual has different levels of alterations (for
example, due to intratumoral heterogeneity). A random effect can also be included
in the transition probability functions, modelling scenarios where there is a large
difference in proportions of alterations amongst individuals. These situations can
easily be adapted to our model and an appropriate RJMCMC algorithm can be
designed. However, the method presented here will need strong requirements for
the analysis of high-density microarray platforms with millions of probes in terms
of memory and computing time. For the analysis of these big data sets we sug-
gest using our method for a detailed analysis of preselected interesting regions or
segmenting each array with a fast smoothing algorithm (like [8, 9]), then selecting
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regions with copy number changes and finally applying our model to them.

Supplementary Material

R code for the models is available upon request. The material referenced in Section
3.2 is available in the on-line Supplementary Material.
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