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Overview

Phylogenies and tree-thinking
Basic (math) models of substitution (DNA and proteins)
Phylogenetic reconstruction
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Why do phylogenies matter?

Dobzhansky’s “Nothing in biology makes sense except in
the light of evolution”.
Alignment and scores.
The major groups of organisms, the history of life, our
place in all the mess, etc.

5 / 54



Overview Intro Interpreting trees and terminology Counting Species vs. gene trees Appendix

Why do phylogenies matter?

HIV, SARS, Ebola, etc: phylogenies used to:
identify source of virus (geographical source);
date the onset of epidemic;
detect recombination;
track viral evolution within patient;
identify modes of transmission;
key mutations for spreading;
original viral host;
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SARS history

From Cristianini and Hahn, 2006

7 / 54



Overview Intro Interpreting trees and terminology Counting Species vs. gene trees Appendix

Intrapatient tumor phylogeny

From Letouze et al., 2010
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Reconstructing ancestral states: “molecular
archaeology”
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Reasons of why we cover what we cover

Because it is important
Because it is beautiful
To introduce and connect with other ideas

Just algorithms vs. probabilistic models
It takes sooooooo long: Computational complexity or how
many trees are there?
Maximum likelihood
Bayesian approaches
Assessing confidence: the bootstrap
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Interpreting trees

Which phylogeny is correct? And using the left, is the frog more
closely related to the fish or the human?

From Baum et al., 2005.
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Interpreting trees

Which is (are) the species/sequences most closely related to
B?

From Sandvik, 2008.
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Maybe simpler?
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Some terminology

From Omland et al., 2005.
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Usual terms

Leave, tip, terminal node, taxon/taxa, sequences
Internal nodes
Branches, edges
Clade, monophyletic group
Polytomy, multifurcation
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A classical non-monophyletic group

A croc: is it more closely related to a bird or to a lizard?
A dinosaur: is it more closely related to a bird or to a croc or a lizard?
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Unscaled vs. scaled

From Pevsner, 2009 (p. 232).
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Scaled?

Is that time?

Amount of change (substitutions or whatever)
Amount of change not necessarily ∝ time. Why?
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Rooted and unrooted

(Higgs & Attwood, 2005 (p. 160).)
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How are they rooted?

Some methods return rooted trees. Most don’t.
Simple heuristics.
Outgroups (“which amounts to knowing the truth”).
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Beware of representation!!!

Most methods return unrooted trees.
Many programs, by default, represent them as rooted.
MEGA does that.
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Time, age, and the left

Anything strange?

From Omland et al., 2005.
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Left does not mean old
Outgroups (and outgroups need not be primitive)
Cannot say which is oldest/youngest/most derived/most
complex
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Just different representations (if unrooted? if rooted?)
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Representations: do it with MEGA at home

Open MEGA.
Build a tree with Drosophila data set.
Change the root.
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Polytomies

Left figure from Xiong, 2006. Right figure from Vandamme, in Lemmey et al., 2009.
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Polytomies

How are multifurcations interpreted.
How are multifurcations represented: binary splits with 0
length.

Beware of representations!
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Exercises

Open the paper by Capra and Kotska about DNA methylation.
Locate the figure where they have something like a tree, and
identify if:

It is rooted or unrooted (and why)
It is scaled or unscaled
Are there any polytomies
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Counting trees: why?

A simple request:
You have 50 sequences.
You want to find the best phylogeny.
Build/construct all phylogenies and compare them.
So . . . how many trees do we need to consider?
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Guess: how many rooted bifurcating trees?

For 50 sequences/species
1 103 to 105

2 107 to 1010

3 1015 to 1050

4 1070 to 1090

5 10100 to 10150
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Counting: key results

(Details in Appendix)
For n taxa/leaves/terminal nodes:

If unrooted tree
(n − 2) internal nodes
(2n − 2) total nodes
(2n − 3) branches
(2n − 5)!! trees

If rooted tree
(n − 1) internal nodes
(2n − 1) total nodes
(2n − 2) branches
(2n − 3)!! trees
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Counting: exercise (Do it now)

You have downloaded a small data set of 12 protein sequences
from NCBI and you want to reconstruct their phylogenetic
history. What is the total number of possible . . .

. . . unrooted trees

. . . rooted trees
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The moral of counting

Counting is important.
We need an idea of the size of our problems before
jumping into them.
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Can we reconstruct large phylogenies?

Yes, definitely.
Some methods quickly obtain a phylogeny without looking
through existing alternatives.
Other methods do not examine ALL possible alternatives.
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What are we reconstructing the history of?

Species?
Genes?

35 / 54



Overview Intro Interpreting trees and terminology Counting Species vs. gene trees Appendix

Species vs. gene phylogenies

What is the difference?

Species trees Branching points represent speciation
events.

Gene trees Branching points: divergence of the gene
sequence.
Branching points might also represent gene
duplication events (not necessarily).

Might, or might not, coincide.
For reconstructing speciation events, we want to use
orthologous genes.
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Gene trees: recall these facts

“Genes have gene trees because of gene replication. As a
gene copy at a locus in the genome replicates and its copies
are passed on to (...) offspring, branching points are generated”
(Maddison, 1997).

“When dealing with a gene that has polymorphic sites in the
parent and daughter species, the nodes never really reflect the
speciation event, but merely separation between different
alleles.” (Vandamme, in Lemey et al., 2006)
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Why the difference between species and gene trees?

Horizontal gene transfer
Deep coalescence or lineage sorting: ancestral
polymorphisms that persist through speciation events.
Gene duplication (and extinction).
And we reconstruct from samples (e.g., the sequence of
hemoglobin of one specific cow or cows).

All of the figures for this section from Maddison, 1997, Systematic Biology, 46
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No problem here
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Horizontal gene transfer
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Deep coalescence/species sorting
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Gene duplication and extinction (“paralogous
sampling”)
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How likely?

Horizontal transfer Type of organism and how closely related.
Deep coalescence Depends on speciation speed and

population size.
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What should we do?

If you care about a gene, reconstruct the gene tree.
If you care about species/speciation:

use several genes (yes, but how?)
try to avoid and/or disentangle possible causes (lineage
sorting, paralogous sampling and gene duplication, etc)
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Exercise: Is this a species or a gene tree?

From http://commons.wikimedia.org/wiki/File:Homology.png
http://commons.wikimedia.org/wiki/File%3AHomology.png
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Counting trees: key elements of arguments

Find out number of internal nodes for a given number, n, of
species/leaves/terminal nodes/taxa.
Find out number of branches/edges.
Express number of trees for n species as
“something * number of trees for (n − 1) species.”
(And then use a recursive argument down to n = 3 for
unrooted trees).
Realize that number of rooted trees (for n species) is
“something else * number of unrooted trees for n species.”

46 / 54



Overview Intro Interpreting trees and terminology Counting Species vs. gene trees Appendix

As extra help

Get a piece of paper and draw them.
Start with unrooted trees. n = 1,2,3,4 species.

Number of species Number of unrooted trees
1 something
2 something
3 something
4 something
. . . . . .
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Let’s count: Edges and nodes (bifurcating trees)

(Taken from Durbin et al., 1998 and Felsenstein, 2004)

Suppose n terminal/extant species/sequences. (Take a piece of
paper. Set n = 3 and then n = 4).

How many nodes if tree is rooted?
n terminal nodes (or taxa, or leaves).
n − 1 internal nodes: why?
Thus: (2n − 1) nodes and (2n − 2) edges/branches.

If unrooted?
One fewer of each:
(2n − 2) nodes and (2n − 3) edges/branches.
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Counting: Unrooted to rooted.

How do we turn an unrooted tree into a rooted one? Add a
root.
Where?
To any branch.
Since there are (2n − 3) edges in an unrooted tree, an
unrooted tree with n leaves/taxa produces (2n − 3) rooted
trees.
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Counting: number of unrooted (is something * number
of unrooted of one fewer species)

Let’s add a new species, not a root, to an unrooted tree.
An unrooted tree with n species can have a new species
added at any of (2n − 3) places.
We are done!
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Counting rooted: really, are we done?

Suppose n = 4.
How many unrooted trees do I get if I add a fifth species?
In an unrooted tree with 4 species I can add a fifth species
in any of the internal branches, so at any one of
(2 ∗ 4− 3) = 5 places. Thus, the number of unrooted trees
for five species is 5 times the number of trees I have with 4
species.
How many do I have with 4 species? I can add a fourth
species at (2 ∗ 3− 3) = 3 places. Thus, I have 3 times the
number of trees I have with 3 species.
How many do I have with 3? 1. (Draw it!)

1three species ∗ 3four species ∗ 5five species
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Counting rooted: really, are we done?

So ...
If we add species number n, we have
(2 ∗ (n − 1)− 3) = 2n − 5 as many unrooted trees as for
species n − 1.
Number of unrooted trees for n species: (2n − 5)!!
The “!!” is like a factorial, skipping numbers. E.g.:
9!! = 9 ∗ 7 ∗ 5 ∗ 3 ∗ 1.
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And rooted trees?

I can add a root at any of the 2n − 3 edges. So I have
2n − 3 as:
many rooted trees as unrooted trees.
Number of rooted trees: (2n − 3)!!.
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By the way that is a recursive relationship

We express the number of trees with n species as:
something ∗ number of trees with (n − 1) species.
(But we can compute it iteratively)
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Main steps to build a tree

1 Select sequences
2 Align them
3 Decide on a model of substitution for nucleotides or AAs.
4 Build tree(s): find the best one(s)
5 Evaluate tree(s): how reliable is/are the tree(s)
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DNA or proteins for constructing phylogenetic trees?

Closely related organisms: DNA often better (faster
evolution).
For not-so-closely related: DNA might have changed too
much (be saturated).
High quality multiple alignment: easier with proteins.
ML (Maximum likelihood) and Bayesian methods often too
slow with proteins. (But then, if that is what you want . . . )
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DNA or proteins for constructing phylogenetic trees? (II)

Additional considerations.

If using proteins, cannot differentiate and use info from silent substitutions.

Nucleotides: third codon often a different rate; must be modeled. (No need to
worry about this with proteins).

DNA allows study of synonymous vs. non-synonymous substitution rates:
selection.

With DNA can use non-coding regions: sometimes these can vary greatly in
rates; some can have neutral rates.

With DNA we can use pseudogenes.

7 / 31



Overview Models of substitution Why
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Main steps to build a tree

1 Select sequences
2 Align them
3 Decide on a model of substitution for nucleotides or

AAs.
4 Build tree(s): find the best one(s)
5 Evaluate tree(s): how reliable is/are the tree(s)
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The matrix of distances (Number of substitutions)


H.s. Frog Chicken M.m.

H.s. 0 5 5 3
Frog 5 0 6 6
Chicken 5 6 0 4
M.m. 3 6 4 0


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p-distance

A minor thing:

Instead of number of changes we will often want to use the p-distance:
proportion of nucleotide sites that differ.

(Automatically normalizes by number of comparisons made)

Divide the matrix by the number of comparisons.
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Number of changes underestimates . . .

(Higgs & Attwood, 2005.)
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We need a model

Multiple alignment→ amount change
The distances we use to reconstruct trees are supposed to
reflect amount of change.
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Number/proportion of changes are not good enough

Underestimation of true number of changes
(If number of changes are not good enough, neither are
p-distances.)
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We depend on the model

No such thing as “model-free” phylogenetic reconstruction
There is no such thing as “model-free” inference (here or
anywhere else).
No model, no inference. (e.g, E. Sober, 1998,
“Reconstructing the past”).
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Substitution matrices

S(t) =


A C G T

A P(A|A, t) P(C|A, t) P(G|A, t) P(T |A, t)
C P(A|C, t) P(C|C, t) P(G|C, t) P(T |C, t)
G P(A|G, t) P(C|G, t) P(G|G, t) P(T |G, t)
T P(A|T , t) P(C|T , t) P(G|T , t) P(T |T , t)


(ugly those column and row names, thus often)

S(t) =


P(A|A, t) P(C|A, t) P(G|A, t) P(T |A, t)
P(A|C, t) P(C|C, t) P(G|C, t) P(T |C, t)
P(A|G, t) P(C|G, t) P(G|G, t) P(T |G, t)
P(A|T , t) P(C|T , t) P(G|T , t) P(T |T , t)


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Substitution matrices and distances

Evolutionary distance→ prob. change→ p-distance.

If we know probabilities of change (the previous matrix)
We can obtain the probability that a given site differs
between two sequences after some time
We can obtain the expected number of sites with change,
or the p-distance corresponding to a given evolutionary
distance

If we measure p-distance
We can infer the evolutionary distance

A model gives the relationship: p-distance↔ evolutionary
distance
(a formula to go from one to the other)
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(Yes, you use formulas like that all the time)

At supermarket x, one can of lentils costs 79 cents.
I have 20 cans of lentils in my cart; I will pay . . .
I have paid 7.9 euros; there were . . . cans of lentils in my
cart.

(Image from

https://st1.tudespensa.com/rep/14b9/imagenes/41526/109/las-lentejas-de-la-abuela-litoral-lata-440-gr.jpg)
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Jukes-Cantor

D = −3
4 ln(1− 4p

3 )

where
D: true distance (true number of nucleotide substitutions
per site; some books use K or other terms)
p (some books use d , D, or f ): fraction of sites that differ, p
distance

(So instead of price per can of lentils you have p-distance and instead of total amount

per cart you have true evolutionary distance.)
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Jukes-Cantor: a figure
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Jukes-Cantor: assumptions

All nucleotides undergo transitions at same rate α.

21 / 31



Overview Models of substitution Why

Jukes-Cantor: assumptions and details

All nucleotides undergo transitions at same rate α.
This is the rate matrix: total rate of change is 3α:


A C G T

A −3α α α α
C α −3α α α
G α α −3α α
T α α α −3α


The equilibirum frequency of all nucleotides is the same:
qA = qC = qG = qT = 0.25 [this is really a consequence].
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Kimura’s 1980 model

And if transitions more common than transversions?
Kimura’s model. Rate matrix:


A C G T

A −2β − α β α β
C β −2β − α β α
G α β −2β − α β
T β α β −2β − α


When t =∞, also qA = qC = qG = qT = 1

4 .

(Now, your cart includes cans of lentils and eggs, and eggs and lentils have different

prices. But you can still figure out the total amount you will pay.)
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Other models?

Yes, a bunch of others, commonly used.
F84 (Felsenstein 84) and HKY (Hasegawa, Kishino, Yano):
like Kimura, but arbitrary base frequencies.
Tamura’s adjusts for GC content.
GTR (general time reversible)
. . .
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And can rates vary among sites?

YES!!!
We model the distribution of the rates (usually a Gamma
distribution).
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What do these models give us

A way of multiple alignment→ evolutionary distance
A way of making probabilistic statements about each
position in alignment:

How likely is it that we get, say, A from C in t time?
How likely is it that C in sequence 1 and G in sequence 23
have the same common ancestor?
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Substitution models for proteins

Not 4x4 but 20x20.
Most empirically derived.
PAM
PAM in particular can be easily turned into something that
looks similar to J-C, Kimura, etc, matrices.
JTT (Jones-Taylor-Thornton)
Poisson model to correct for multiple substitutions:

Uses the number of changes.
Adds a correction term (D = − ln(1− p))
Also applicable to nucleotides.

. . .
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Choosing models and parameters

Parameters: They can be estimated while/before we carry
out the tree-building.
Model: we can assess fit, and choose best fitting one (or
use a mixture).
MEGA: under “Models”.
JModelTest (Posada, Crandall, et al.)
etc
Do not use uncorrected distances.
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Exercise

Open MEGA. Find, in the Help, where the models of
substitution are discussed (hint: it is in “Part IV:
Evolutionary analysis”).
Find (and look over quickly) the Jukes-Cantor and the
Kimura 2-parameter explanation.
How many other models are discussed?
And what about models for amino acid sequences?
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HIV

From Faria et al., 2014. Science, 346 (3-October-2014): 56–61 (and from El Pais
http://elpais.com/elpais/2014/10/02/ciencia/1412260639_097968.html)
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Ebola

From Gire et al., 2014. “Genomic surveillance elucidates Ebola virus origin and transmission during the 2014
outbreak”, Science, 345 (12-September)
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Outline

1 Method overview
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4 The bootstrap: Assessing confidence
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What next?

10 Appendix
Further details about algorithms
More about alignments
Bayesian approaches: MCMC
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So we have a model for substitutions . . .

. . . now what?
We can get a matrix of distances that reflect amount of
evolutionary change
We can compute probability of a given substitution
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Main methods (I)

Distance-based methods Work with distances.

From alignment to a distance
(Summarize the alignment in a single number:
evolutionary distance.)
Tree that fits that distance

Character-based methods Use the alignment directly.

Use sequence of characters directly.
Find tree for that set of characters.
Tree found/chosen with a model for the
characters
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Main methods (II)

Algorithmic Estimate a single tree from the data with an
algorithm.

Many distance based.
Single tree: good and bad.

Tree-searching Build many trees, compare them, keep the best
one(s).

Character-based, some distance-based.
Many trees: good and bad.
Slower and how do we move in the space of
trees?
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A catalog of some methods
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Method Distance/
Character

Algorithmic/
Tree search

UPGMA Distance Algorithmic
NJ (Neighbor joining) et al. (BIONJ, . . . ) Distance Algorithmic
Minimum Evolution Distance Tree search
Least squares (e.g., Fitch-Margoliash) Distance Tree search
Parsimony Character Tree search
ML (Max. likelihood) Character Tree search
Bayesian Character Tree search
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UPGMA: a figure

From Higgs and Attwood, 2005.
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UPGMA: main characteristics

Uses distances.
Returns a single rooted tree.

All leaves equally distant from root⇒
molecular clock with constant rate.
(Assumes distances are ultrametric; details in “Appendix” )
If forces the distances in the tree to fit a particular model,
even if the original distances do not fit that at all.
By forcing distances to fit a very restrictive model, no only
is the figure distorted; ancestor-descendant
relationships can be seriously wrong.
Do not use this method for real in phylogenetic
reconstruction
(What about other uses?)
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UPGMA: key elements of the algorithm

(Only if you want the details; skip otherwise!)
1 Start from the tips (“move up”).
2 Find pair of taxa with smallest distance.
3 Height of new node: place parent node at midpoint of branch.
4 Distance of any other node to new cluster: average of distance between “other”

and members of new cluster.
5 Repeat until done.

(Details in “Appendix” )

10 / 66



Overview UPGMA NJ Bootstrap Parsimony ML Bayesian So?? Next? Appendix

Why do we even talk about this?

So that you do not use it for phylogenetic tree building.
Because widely used for clustering.
To highlight differences between “other types of clustering”
and phylogenetic tree building.
To see what NJ does.
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NJ: a picture

From Durbin et al, 1998. Notice the branch lengths!!
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Neighbor Joining (NJ): key features of algorithm

Uses distances.
Returns a single unrooted tree.
Start from the tips. Does not construct clusters (clades) but
directly calculate distances to internal nodes

1 Compute the average distance of each taxon, i , to each
other taxa. “Net divergence”, “how far from the rest”.

2 Correct pairwise distances by the
net divergence. We get Dij .

3 Taxa with minimal Dij put together in an internal node.
4 Compute distance between the new node and its daughter

taxa. Daughter taxa need not be
equally distant from parent!

5 Compute distances between new node and remaining taxa.
6 Repeat until only two taxa left.

Details in “Appendix”
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Neighbor Joining (NJ): assumptions

Assumes additivity: distances between any two nodes
sum of lengths of all branches between them. No
molecular clock assumption.
Can we use NJ if distances deviate from additivity? Yes,
but correct tree no longer guaranteed.
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NJ: some features

Fast.
Often a very good tree.
Use on its own, or as starting point for other more
computationally intensive methods (parsimony, ML,
Bayesian).
There are other variants (see “Appendix” ).
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Exercise

Open the paper by Sottoriva et al.
In less than 10 seconds: go to page 4 and answer if that
figure is a phylogeny? How can you tell?
In less than 10 seconds, go to p. 5, and answer if figure 4
B is showing a phylogeny. Do you think these are scaled or
unscaled?
In 20 seconds, give a more complete answer to the
previous question: where do they specify how they built the
phylogeny? What characters did they use?
In less than 40 seconds: Go to p. 12. Are those
phylogenies or something else? Find (Supplementary
material) where they say how those were built. And what
characters did they use?
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Exercise

Open the paper by Wang et al.
In less than 5 seconds, go to p. 4, and say if figure 3 d is a
pylogeny, if it is rooted (and if so, how), and the method
used.
In another 15 seconds, find where, in the paper, are the
details given (hint, go to the Methods, that for Nature tends
to be “supplementary”, starting here on p. 7).
Do you think this is a good or a bad idea?
Do you see anything similar/different with what Sottoriva et
al. do?
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Moral

Not every tree is a phylogeny, not every phylogeny looks
like a dendrogram.
You can use different types of characters.
Details DO matter a lot.
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How reliable is the tree?

Reliability of group membership: Are members of a
group really members of that group? (emphasis on
branches that split groups, not distances).
(Interior branches, not clades).
Resample (with replacement) the aligment and build trees.
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Bootstrap

From Felsenstein, 2004.
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Bootstrap

From Van de Peer,
in Lemey et al, 2009. Beware of numbers on roots!
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Bootstrap: miscell

General statistical technique (and we will use it with ML
and parsimony too).
Number of replicates: please, nothing less than 200.
Original tree need not be the same as Bootstrap
consensus tree
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Parsimony

Find the tree(s) that requires the smallest number of
substitutions to explain the data.
(Only the leaves are observed!! Ancestors are hypothesized states)

We prefer the left one.
From Yang, 2006.
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Parsimony: two things we need

A way of scoring a phylogenetic tree or how to say if a
tree is better than another tree: smaller number of
substitutions is better. (details of an algorithm in “Appendix” ).
A way of exploring tree space to search for better trees.
(This is not specific to parsimony).
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Exploring space of trees

Exhaustive only feasible for few taxa.
Heuristic search methods (no guarantees we will hit the
best).
(More in “Appendix” )
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Parsimony: assessing reliability

Bootstrap.
And there might be several equally good trees with original
data: consensus tree from the original data.
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Parsimony: issues

Fast.
Simple to understand.
Robust to inter-site rate variation.
What model is that anyway? Occam’s razor?

Ch. 10 in Felsenstein
E. Sober, 1998, “Reconstructing the past”

No principled way of exploring alternative weights/models
(compare haphazard weighted parsimony with model
comparison).
Fast evolution and lots of reversals: problematic.
Long branch attraction (because branch length is
disregarded): statistically not consistent.
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Maximum likelihood

One coin.
Toss it ten times.
Get heads 6 times.
What is your estimate of probability of heads p̂?

p̂ = 0.6 is the maximum likelihood estimate: No other p will
make the observed data more likely.
pML = argmax

p
P(Data|p)
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ML for phylogenetic inference

Find the tree (topology and branch lengths) that make the
observed data most likely.
If Data had a single column in the alignment:

TreeML = argmax
Tree

P(Data|Tree)

If we have more than one column, each position in the
alignment usually taken as independent:

P(D1,D2, . . . ,Dn|Tree) =
i=n∏
i=1

P(Di |Tree)

and find the tree that makes the above the largest.
(Often you’ll see logs: so as to turn products into sums.)

29 / 66



Overview UPGMA NJ Bootstrap Parsimony ML Bayesian So?? Next? Appendix

ML: ingredients

A way to find
∏

P(Di |Tree)
A way to move around (explore) the space of trees. We’ve
seen this already. “Exploring space of trees”

This modus operandi seen before with parsimony.
With parsimony we want to minimize number of changes
With ML we want to maximize the likelihood

And then we search for the max (or the min, in parsimony).

Iterate over those steps (draw it in the blackboard).
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How do we find the probability?

The evolutionary model!
Recall J-C: we can obtain the probability of, say, getting a
C from a T in 10 units of time
Just need to be careful and go over the (unknown) internal
nodes.
Place the root somewhere, and cover whole tree.
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ML: a figure

P(A,C,C,C,G, x , y , z,w |T ) = P(x)P(y |x , t6)P(A|y , t1)P(C|y , t2)
P(z|x , t8)P(C|z, t3)P(w |z, t7)P(C|w , t4)P(G|w , t5)

(Then sum over all possible P(x),P(y),P(z),P(w))
From Felsenstein, 2004.
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How to assess the tree

Bootstrap: “How reliable is the tree”
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The Bayesian idea

ML gives us the parameters that make the data most likely.
Bayesian methods give as the parameters that are most
likely, given the data.
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Bayes rule with trees

Bayes rule: P(A|B) = P(B|A)P(A)
P(B)

P(Tree|Data) = P(Data|Tree)P(Tree)
P(Data)

On the left: the posterior
Likelihood: P(Data|Tree)
Bayesians also need P(Tree): the prior.
P(Tree|Data) ∝ P(Data|Tree)P(Tree)
(P(Data): we will not care much about it; just a
normalization constant. Often we can ignore it)
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The prior

Flat priors, non-informative priors, issues of scale, how to
come up for priors for trees, etc.
If you have enough data, the prior is completely swamped
by the likelihood. Little effect.
Still, the prior can be a (very) contentious issue.
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Bayesian: no need for bootstrap

We get probability estimates directly
Easier to interpret than bootstrap (if we trust the prior and
models)
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Bayesian: Miscell

Can be faster than ML
Might be (in practice) more flexible than Maximum
Likelihood
Appropriate usage of Bayesian approaches might require
more skill than with other methods.
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Which method to use?

One ordering: Bayesian slightly better than ML slightly
better than Parsimony slightly better than NJ.
Caveats about parsimony (might not be statistically
consistent, Felsenstein zone, hides the model, etc).
Caveats about Bayesian (priors).
Time constraints.
Available software.
Difficulty of using it well.

A great method might be great if used by a skilled user but
terrible if used by inexperienced users.
An average method might perform better if used by a
not-so-skilled user.

Other possible uses (ancestral reconstructions)

39 / 66



Overview UPGMA NJ Bootstrap Parsimony ML Bayesian So?? Next? Appendix

A bit of history and philosophy

Ch. 10 in Felsenstein
David Hull’s “Science as a process”
Elliot Sober’s “Reconstructing the past”
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What we haven’t covered

A lot!
Phylogenetic networks
Reconstructing ancestral states (“molecular paleontology”)
Combining information
Detecting adaptive evolution (dN/dS ratios)
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Detecting adaptive evolution

dN/dS ratios.
> 1: positive selection
< 1: purifying selection
= 1: neutral.
How exactly to do this? See Nei and Kumar, 2000.
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Phylogenetic networks

From Bryant et al., 2007, Algorithms in Molecular Biology. Image from

http://www.almob.org/content/2/1/8/figure/F1?highres=y

43 / 66

Gene transfer, recombination, hybridization:

http://www.almob.org/content/2/1/8/figure/F1?highres=y


Overview UPGMA NJ Bootstrap Parsimony ML Bayesian So?? Next? Appendix

Reconstructing ancestral states

Try with MEGA
Definitely read ch. 13 in Hall, 2011.
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Combining information from multiple genes

How should we incorporate multiple different sequences
which might require possibly different model parameters?
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What next?

Are you ready to prepare publication-quality phylogenetic
trees?
Almost
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What next? (II)

You should look at
Hall, 2011, “Phylogenetic trees made easy”
Yang, 2014, “Molecular evolution: a statistical approach”.
Lemey et al., 2009, “The phylogenetic handbook” (some
chapters, as needed).

Probably take a look at:
Nei and Kumar, 2000, “Molecular evolution and
phylogenetics”.
Graur and Li, 2000, “Fundamentals of molecular evolution”
(ch. 5)
Felsenstein, 2004, “Inferring phylogenies”.
Huson et al. 2011 “Phylogenetic networks”. (if you deal
with this)
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Software

Exhaustive (huge!) list at:
http://evolution.genetics.washington.edu/
phylip/software.html.
MEGA.
PHYLIP: probably most widely distributed phylogeny
package. Command line and a Java interface. Parsimony,
distance, ML. Free software.
MrBayes for Bayesian. Free software.
R. Free sofware.
For serious parsimony: probably want PAUP* or Phylip.
(MEGA seems a little limited). PAUP* is NOT free.
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Software (II)

Web servers
LIRMM: http://www.phylogeny.fr/. “Robust for the
non specialist”.
Pasteur Institute:
http://mobyle.pasteur.fr/cgi-bin/portal.py
University of Oslo: http://www.bioportal.uio.no/
(requires getting a free account).
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10 Appendix
Further details about algorithms
More about alignments
Bayesian approaches: MCMC
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UPGMA: the algorithm

1 Put each taxon (or sequence) in its own cluster. (So we
start from the bottom up).

2 Find pair of clusters with smallest distance. Suppose these
are i , j .

3 Create a new cluster, find its height, recompute distances:

a. Put i , j are put into a cluster. Let’s call it IJ. i and j are
removed from the distance matrix (but not the new cluster
IJ).

b. Height of node IJ = 1
2 dij . (So this is the same as placing

parent node, IJ at midpoint of branch)
c. Recompute distance matrix: distance of any other taxa, k ,

to IJ is average of distance between k and i and j (i.e.,
average of dki ,dkj ).

4 Repeat 2. and 3. until done.
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UPGMA: ultrametricity

Assumes ultrametricity. Ultrametric distances: for any
three taxa, i , j , k , distances di ,dj ,dk either all equal, or two
equal and the third is smaller. Check the tree to
understand this!
Ultrametricity OK if molecular clock. Not otherwise.
UPGMA forces the tree to be ultrametric (even if original
distances are not).
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UPGMA: oooops!

From Durbin et al, 1998.
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Neighbor Joining, key features of algorithm: formulas

1 Compute the average distance of each taxon, i , to each
other taxa: ri .

2 Correct pairwise distances: Dij = dij − (ri + rj).
3 Find min in Dij . Call k the new taxon.
4 Compute distance between the new node, k and its

daughter taxa: dik ,djk . dik = 1
2(dij + ri − rj). dik need

not be equal to djk .
5 Compute distance between k and remaining taxa. For all

m in the remaining taxa: dkm = 1
2(dim + djm − dij).
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Neighbor Joining (NJ): assumptions

Returns a single unrooted tree.
Assumes aditivity.
A tree with additive distances: distances between any two
nodes sum of lengths of all branches between them.
NJ will take a distance matrix and return an (unrooted) tree
with additive distances.
(We can check if a distance matrix is additive: the four
point condition. )
Can we use NJ if distances deviate from additivity? Yes,
but correct tree no longer guaranteed.
No method can guarantee the correct tree in real life.
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Other distance-based

Variants of NJ: e.g., BIONJ.
Try to find the best fitting tree.
What is best? E.g.:

Minimum evolution over all tree (total branch lengths of
reconstructed tree).
Least-squares methods (minimize deviations of distances in
tree from distances in original distance matrix). Several
types.

These methods give a criterion for choosing among trees.
These methods do not give an algorithm for building the
tree!
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Parsimony: one algorithm for scoring

We have a tree and a set of sequences. What is the score of
the tree?
Unweighted parsimony, main steps:

Each character is treated independently.
Go up (from leaves to root)
If daughters share the state, set a pseudo-ancestral state
(minimal cost residues) to the shared state (and do not
penalize).
If daughters do not share state, set pseudo-ancestral as
the union, and increment homoplasy count.
Can go down if need the reconstruct ancestral states, but
can miss solutions. More sophisticated ways.
Most “for real” implementations use other approaches
(e.g., Sankoff’s).

And the root? It does not matter where it is placed.
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Exploring space of trees. Exhaustive search

Exhaustive only feasible for few taxa.
Start with three taxa, and keep adding.
Can use branch-and-bound (ramificación y poda?).

Suppose we have a tree with 10 taxa and cost 4.
We are now in tree with 5 taxa and cost 5. No need to
continue adding taxa to this tree (we get rid of a whole
family of trees).
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Heuristic search methods

Get a tree. Modify it. Is it any better? Can it be improved
by minor modifications?
“Shake the system” to explore the parameter space.
Popular moves:

Exchange neighbors (nearest neighbor interchange)
Move subtrees (subtree prunning and regrafting)
Cut the tree and reconnect in one random branch (tree
bisection and reconnection)
There are others.
(A figure in “Appendix” )
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Tree movements: a figure

From Higgs and Attwood, 2005. In 4, we the subtree was “D”.

60 / 66



Overview UPGMA NJ Bootstrap Parsimony ML Bayesian So?? Next? Appendix

Alignments

We take them as given
In real life

Examine them carefully
Possibly not include certain parts of the alignment
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Consequences of alignment problems

Phylogenetic tree building can be robust to minor problems
in alignment.
At least two tasks can be very sensitive:

Reconstructing ancestral states
Detecting adaptive evolution
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Alignments: What can we do?

Know your alignment software well and use good ones.
Look at alignments and possibly edit them.
Some tools available:

GUIDANCE (see Hall, 2011, ch. 12)
ALTAVIST (see ch. 3 in Lemey et al., 2009)

Definitely read ch. 4 and 12 of Hall, 2011.
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When alignments are not used

In some cases we do not use, as such, multiple alignment.

Morphological characters
Phylogenies from CNVs
. . .
Principles the same:

Get a distance matrix from original data and build
phylogeny
Use a model and build phylogeny from original data
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Computation: MCMC

Markov Chain Monte Carlo
We want to get the posterior: P(Tree|Data)
We cannot get it analytically.
But we might be able to numerically calculate P.

Set up a Markov Chain to jump between parameter states
(tree states), so that the posterior is the stationary
distribution.
Sample from the posterior.
Discard first samples, as not reached stationarity (burn-in).
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Computation: MCMC

From Ronquist et al., in Lemey et al, 2006.
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