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Overview

Microarrays et al.: databases and tools
The major questions
Differential expression (or what is up/down regulated?)
Classification and diagnostic tools from molecular markers
Clustering (or are there groups?)
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Key idea

We measure:
“Expression” or “Mutation status” or . . . of genes/probes
For a set of samples (subjects, patients, mice, cell lines,
etc)

Many, many genes/probes (tens of thousands, millions)
Tens to thousands of samples
And we want to do something with that
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How data might look like

From Gema Moreno, Dpto. Biochemistry, UAM
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What details matter to us?

Technological details do not matter to us here.
Microarrays

Custom-made
Commercial platforms

Agilent
Affymetrix
. . .

SNPs
RNA-Seq
Exome sequencing
. . .
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What general issues matter to us?

What are you targeting? What do you want to measure?
Abundance of transcripts
Copy number changes
Relative abundance of polymorphisms
. . .

What type of variable is that?
The number in the cell of the spreadsheet
Continuous-like vs. count

Need for normalization
E.g., microarrays: GC content
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Databases and portals

ArrayExpress: “a database of functional genomics
experiments that can be queried and the data downloaded.
It includes gene expression data from microarray and high
throughput sequencing studies. Data is collected to
MIAME and MINSEQE standards. Experiments are
submitted directly to ArrayExpress or are imported from
the NCBI GEO database.”
http://www.ebi.ac.uk/arrayexpress/

GEO: “a public functional genomics data repository
supporting MIAME-compliant data submissions. Array-
and sequence-based data are accepted. Tools are
provided to help users query and download experiments
and curated gene expression profiles.”
http://www.ncbi.nlm.nih.gov/geo/

Notice the “MIAME”: standards.
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Databases and portals

The Next Generation Cancer Knowledge Network at
“The GDC [genomic data commons] supports several
cancer genome programs at the NCI Center for Cancer
Genomics (CCG), including The Cancer Genome Atlas
(TCGA) and Therapeutically Applicable Research to
Generate Effective Treatments (TARGET).”
https://gdc.cancer.gov/.
“The GDC Data Analysis, Visualization, and Exploration
(DAVE) Tools allow users to interact intuitively with the
GDC data and promote the development of a true cancer
genomics knowledge base.”
“The GDC Data Portal provides a platform for efficiently
querying and downloading high quality and complete data.
The GDC also provides a GDC Data Transfer Tool and a
GDC API for programmatic access.”
. . .
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Tools and databases

Nucleic Acids Research Web server issue: tools (July
each year)
Nucleic Acids Research Database issue: databases
(January each year)
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Tools

GenomeSpace “brings together diverse computational
tools into one place, enabling scientists without
programming skills to easily combine their capabilities. (...)
it aims to offer a common space to create, manipulate and
share an ever-growing range of genomic analysis tools.”
http://www.broadinstitute.org/
scientific-community/science/projects/
genomespace/genomespace

Galaxy “is an open, web-based platform for data intensive
biomedical research. Whether on the free public server or
your own instance, you can perform, reproduce, and share
complete analyses.” http://galaxyproject.org/
. . .
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All those data bases and tools . . .

Interfaces of databases change
Available databases grow

primary
secondary

Interfaces of tools change
Available tools increase (and some disappear)

We need to know what we are asking, and how we are trying to
answer the question.
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High-throughput et al.

The following provides some intro slides about microarrays.
Microarrays can be used to measure messenger RNA
(mRNA) or gene expression. Similar approaches for array
CGH (messure copy number in genomic DNA). Similar
approaches for . . .
The technical details are not important.
What really matters: a few hundreds of subjects, and for
each one of them information on tens of thousands to
millions of characters (genes, probes, SNPs, whatever).
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Microarrays as an example

Material from Gema Moreno Bueno (Dept. Bioquímica,
Universidad Autónoma de Madrid).

(The slides are about measuring gene expression, mRNA. It is
assumed that we can do mRNA -> cDNA ).
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Objectives

Be aware that from data to biomedical conclusions there
are several steps that require statistics. We want to make
inferences in a noisy world.
Be aware of the “big themes”.
Understand the origin of some of the statistical issues.
Know when you need to talk to a statistician (almost
always).
Be aware of the kinds of things a statistician is thinking.
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Some common questions

Are there groups in the genes?
Are there groups in the subjects?
Do groups of subjects differ in the expression of some
genes?
Can we find genes that will allow us to differentiate
between the groups of patients?
All of this, in a context of high expectations . . .
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Moral (moraleja, in Spanish)

Gene expression technologies show great promise to
improve predictions of prognosis and treatment benefit
(. . . ). The multidimensional nature of these predictors
demands that (. . . ) that exceptional rigor and discipline
be applied in evaluation.

L. Marchionni et al., Ann Intern Medl, 2008
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The dangers of “capitalizing on chance”

Statistical context: many genes, few subjects. p � n.

Differentially expressed genes Risk of too many false positives
⇒ adjustments in the screening of p-values.

Classification/prediction Very easy to obtain algorithms that
classify, perfectly, our data, but not new data⇒
validate algorithms and classifiers

Hypotheses/questions Tempting to make them vague, or ask
none and wait until “the data say something”⇒
define objectives and how we will measure what
we are interested in.
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Are there differences in the expression of certain
genes between/among groups of subjects?

If we have 2 (or 3, or 4, or ...) kinds of subjects (e.g., breast
cancer vs. colon cancer), what genes behave differently?
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Differential expression vs. classification

[Classification/prediction]

Can we classify subjects into their true groups if we know the
expression of certain genes?

(Are there genes that can allow us to differentiate between
groups of subjects?)

vs.

[Differential expression]

What genes show differences between groups of subjects?

11 / 84



Introduction p-values Multiple testing Design and analysis, I Design and analysis, II Appendix

Differential expression

What does it mean “to show differences”?

Eg., differences in means: the mean of expression of gene
MYC in group 1 is larger than the mean of expression of
gene MYC in group 2 (group 1 over-expressed compared
to group 2).
“different things”⇒ “differ in the mean” of the populations
But it need not refer to the mean.
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We want to compare the mean of expression of MYC between
15 diseased subjects and 18 non-diseased (“healthy”) subjects.
How?

More formally: can the “true” (mean of) expression of the two
groups be the same? (Do the two groups have the same mean
of expression?)
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We compute the mean of the two groups: 2.2 and 3.4.
So what?
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How can we compare means?

If there were no differences (null hypothesis, H0), what
would we expect?
If there were no differences, what relationship would there
be between labels (diseased, healthy) and values?
t-test, permutation tests, non-parametric tests, etc.

Appendix: Permutation tests .
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What about probability and the strength of evidence?

1 Using differnt approaches (analysis, permutation) we can
obtain the distribution of “t” under the null hypothesis. Null
hypothesis: in this case that the two true means are equal.: Obtain
the distribution of the “t” that one would find if there were,
really, no differences.

2 Compute how likely it is to observe our “t” if the null
hypothesis were true.

3 p-value: how likely our result would be if the null were true.
p-value: a measure of evidence against the null
hypothesis.
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p-value

Differential expression: our hypothesis (µMYC
1 6= µMYC

2 )
p-value: how likely our results if the null hypothesis were
true
(So there is a null hypothesis: H0 : µMYC

1 = µMYC
2 )

p-value: measure of evidence against the null hypothesis.
p-value: it is NOT the probability of the null hypothesis
(nor of the alternative hypothesis).

We compute one p-value for one null hypothesis (one per
gene). E.g., MYC.
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The p-value and the bag of interesting genes

We can think about a statistical test as . . .
a procedure to assign a gene to one of two groups

“Interesting ones” (differentially expressed)
Non “interesting”
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Stop!

Spend the next 2 minutes talking to the person next to you
about:

The key ideas so far
The big picture (why are we talking about this)
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5 Design and analysis, II

6 Appendix
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Multiple testing

We know how to obtain a p-value to compare two groups.
(And there are similar approaches for other comparisons.).
We have, e.g., 10000 genes. So 10000 p-values . . .
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Wait!!!

Do we all know what we are talking about?

E.g., compare gene expression between two sets of patients,
13 with cancer 15 without cancer. And we have measures
10000 genes or probes or SNPs or ...

Which of those are “interesting”? Which of those are
differentially expressed?
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(Remember) p-values and the bag of interesting genes

If we are studying, e.g., differential expression of genes . . .

We can think about a statistical test as . . .
a procedure to assign a gene to one of two groups

“Interesting ones” (probably differentially expressed)
Non “interesting”

We apply now the procedure to each of the genes.

Can we just compute a p-value for each gene and select the
relevant genes as those with small (say, p < 0.05) p-value?

25 / 84



Introduction p-values Multiple testing Design and analysis, I Design and analysis, II Appendix

License plates: what should we make of this?
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Winning the lottery

One or ten tickets?
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The fish (or the fishing expeditions)

We go fishing.
In this sea, there is one specific fish (fish A) with a
probability of being caught of 0.05.
In this sea, there are another 1000 fish like A (but only one
is A, of course). These are “i.i.d” fish (independent of A,
but with identical behavior to A).
What is Pr{eat fish A}?
What is Pr{eat fish}?
(In this case it is simple to see the differences, because the
wording makes obvious we are, or not, restricting ourselves
to “A”. But what if we say “eat fish A” vs. “have dinner”?).
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The fish (II)

Pr{eat fish A} = 0.05.
Pr{eat fish} ' 1 .
The two events (eat A, eat fish) are very different.
Eat fish =

⋃
(eat A,eat B,eat C, . . . ,eat A and B, . . .).

29 / 84



Introduction p-values Multiple testing Design and analysis, I Design and analysis, II Appendix

p-values are like fish

If we have 30000 genes, and there is no differential
expression at all in any . . .
and we declare as “interesting” those genes with p-value
< 0.05 we will make lots of false positives (∼ 1500).
We need to control this.
(Note the differences between testing a pre-specified
hypothesis about a specific gene, and “anything goes”
—any gene with a significant result will do for writing a
paper).
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The p-value case

(An example modified from Westfall and Young, 1993
“Resampling-based multiple testing”).

Suppose we have 100 independent genes. Thus, 100 null
hypotheses, one for each gene.
Suppose also that there are no differences in gene
expression between the two groups of patients (i.e., the
null is true, and we are using the appropriate test so that
the p-value is Uniform on [0,1]).
Thus, the probability that a particular test (say, for gene 3)
is declared significant at level 0.05 is exactly 0.05. Good.
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p-value case (II)

However, the probability of declaring at least one of the
100 hypotheses false (i.e., rejecting at least one, or finding
at least one result significant) is:

Pr(at least one null rejected) = 1− Pr(all pi > 0.05) =
1− (1− 0.05)100 = 1− 0.95100 = 0.994

So now, even if the 100 genes are not differentially
expressed, there is a probability of 0.994 (yes, that is
99%!!!) of “finding” at least one which we declare as
significantly different.
The more genes, the more serious is the problem.
In summary, without control for multiple testing, we would
end up rejecting the null much more often than we should.
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FDR

# non rejected # rejected
# same expression
(H0 true)

U V

# different expres-
sion (H0 false)

T S

FDR False Discovery Rate: expected proportion of type
I error among the rejected nulls: (V + S).
FDR = E(Q) where Q = V/(V + S) if V + S > 0
(and Q = 0 otherwise).

FWER P(V ≥ 1)
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False positives

Why are false positives worse than false negatives?
Even if the false positive rate were zero, we still don’t
have nearly enough resources to experimentally verify
all the claims
(Cited en X.-L. Meng, The American Statistician, 2009)
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FDR: interpreting output

p-value
FDR
FDR-adjusted p-values
Properties of lists! See output.
E.g.: http://pomelo2.iib.uam.es/Examples/
LeukemiaGolub/results.html

Further details in Appendix. FDR: the algorithm
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PEP

PEP, “posterior error probability” or “local FDR”: the
probability that a given feature be incorrect. For instance,
“the probability that gene XYZ is NOT a differentially
expressed one”.
The PEP measures the probability of error for a single
gene, the one with value x (if a single gene with value x).
The PEP measures the error rate for genes with a given
score x (if there are several with score x).
A property of a feature. The probability of a given gene
being a false positive in the context of a collection of
genes (p-values).
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PEP vs. FDR

(Kall et al., 2008. J. Proteome Research, 7: 40–44)
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Forensics

A crime.
DNA test: 1

100000 of match at random.
Two scenarios:

The suspect (suspect because of something else) matches
You search in a large database of individuals and find a
match

Beware of the prosecutor’s fallacy.
See “The Bayesian flip”, by Skorupski and Wainer for some
additional reading.
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Sally Clark case

P(2 SIDS) is rare.
P(2 murders) might be even rarer.
P(Innocent |Data) 6= P(Data|Innocence)
Before someone is sent to jail you probably want:

P(Guilty |Data)
P(Innocent |Data) very large

Beware of the prosecutor’s fallacy.
See the RSS statement and Ben Goldacre’s comments
(http://www.theguardian.com/science/2006/
oct/28/uknews1).
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Stop

Spend the next 2 minutes talking to the person next to you
about the main ideas behind the multiple testing problem. Think
also about what is new to you about all this.
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Multiple testing: struck by lightning?

As it says
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Comparing two groups

(E.g., cancer vs. non-cancer)
A single gene
Many genes
A single gene after adjusting for the effects of other
covariates
Many genes after adjusting for the effects of other
covariates
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Many genes: limma, moderated statistics, etc

For each gene, use ONLY information for that gene
A poor job estimating variances
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Many genes: limma, moderated statistics, etc

Can use information from all other genes when making
inferences about each particular gene, specially in the
estimation of variances.

Empirical Bayes approach of G. Smyth among the most
widely used.
Moderated statistics lead to both increases in power and
decreases in Type I errors.
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Adjusting for other covariates

y = β0 + β1x1 + . . .+ βpxp + e

Yes, you have all seen this: Simple regression yi = α+ βxi + ei
is a special case.

Yes, we can generalize the type of relationship, what the y is,
the functions for the x , etc, etc.
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Comparing two groups: recap

(E.g., cancer vs. non-cancer)
A single gene
Many genes (multiple testing and moderated statistics)
A single gene after adjusting for the effects of other
covariates (the covariate adjustment part)
Many genes after adjusting for the effects of other
covariates (the previous two)
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Comparing two groups: the awesome table

47 / 84

Example question Model H0 Test Other

Is the expression of MYC
different between Cancer (C)
and Non-cancer (N) patients?

MYC ∼ Group µNC = µC t-test

Is the expression of any genes
in this array different between
Cancer (C) and Non-cancer

(N) patients?

MYC ∼ Group

P53 ∼ Group

. . .

. . . ∼ Group

µ
MYC
NC = µ

MYC
C

µ
P53
NC = µ

P53
C

. . .

µ
...
NC = µ

...
C

Many
t-tests

Empirical Bayes
(EB). FDR

Is the expression of MYC
different between Cancer (C)
and Non-cancer (N) patients

when we control for other
factors (age, sex, . . . )?

MYC ∼ Group + Age + Sex µNC = µC t-test
Type or relationship
of others (non-linear,
etc). Interactions

Is the expression of any genes
in this array different between
Cancer (C) and Non-cancer
(N) patients when we control

for other factors?

MYC ∼ Group + Age + Sex

P53 ∼ Group + Age + Sex

. . .

. . . ∼ Group + Age + Sex

µ
MYC
NC = µ

MYC
C

µ
P53
NC = µ

P53
C

. . .

µ
...
NC = µ

...
C

Many
t-tests

Empirical Bayes.
FDR. Type or rela-
tionship of others
(non-linear, etc).
Interactions
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Stop!!

Spend the next 2 minutes talking to the person next to you
about the previous table. Does everything make sense?

Take turns explaining every row of the table. Everything
should be clear.
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Three or more groups

Now we have: colon, prostate, lung, and neck cancer.
What can we do?
ANOVA-like approaches
What is the question? What is the null hypothesis? What
are we asking?

49 / 84



Introduction p-values Multiple testing Design and analysis, I Design and analysis, II Appendix

Three or more groups

Same as above
A single gene
Many genes
A single gene after adjusting for the effects of other
covariates
Many genes after adjusting for the effects of other
covariates
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Comparing three or more groups
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Example question Model H0 Test Other

Is the expression of
MYC different

between patients with
Colon (C), Prostate
(P), Lung (L), and
Neck (N) cancer?

MYC ∼ Group µC = µP = µL = µN ANOVA
(F test)

Might want to do
some pairwise
comparisons.

Is the expression of
any genes in this array

different between
patients with Colon

(C), Prostate (P), Lung
(L), and Neck (N)

cancer?

MYC ∼ Group

P53 ∼ Group

. . .

. . . ∼ Group

µ
MYC
C = µ

MYC
P = µ

MYC
L = µ

MYC
N

µ
P53
C = µ

P53
P = µ

P53
L = µ

P53
N

. . .

µ
. . .
C = µ

. . .
P = µ

. . .
L = µ

. . .
N

Many
ANOVAs

EB. FDR. Might
want to do
some pairwise
comparisons.

Is the expression of
MYC different

between patients with
Colon (C), Prostate
(P), Lung (L), and

Neck (N) cancer when
we control for other

factors?

MYC ∼ Group + Age + Sex µC = µP = µL = µN ANOVA

Might want to do
some pairwise
comparisons.
Type or relation-
ship of others
(non-linear, etc).
Interactions

Is the expression of
any genes in this array

different between
patients with Colon

(C), Prostate (P), Lung
(L), and Neck (N)
cancer when we
control for other

factors?

MYC ∼ Group + Age + Sex

P53 ∼ Group + Age + Sex

. . .

. . . ∼ Group + Age + Sex

µ
MYC
C = µ

MYC
P = µ

MYC
L = µ

MYC
N

µ
P53
C = µ

P53
P = µ

P53
L = µ

P53
N

. . .

µ
. . .
C = µ

. . .
P = µ

. . .
L = µ

. . .
N

Many
ANOVAs

EB. FDR. Might
want to do
some pairwise
comparisons.
Type or relation-
ship of others
(non-linear, etc).
Interactions
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Stop!!

Only 15 seconds: debate what is the difference between the
two awesome tables.
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Why groups? Relationship with a numerical variable

We used to have different types of patients: a categorical
variable.
What if we have some characteristic that is numerical? For
example, cholesterol levels.
What is the biological question?

How does gene expression change with cholesterol.
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Relationship with a numerical variable

Eh!? This ain’t new. Regression: yi = α+ βxi + ei

MYCi = α+ βcholesti + ei
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Same as usual

A single gene
Many genes
A single gene after adjusting for the effects of other
covariates
Many genes after adjusting for the effects of other
covariates
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Relationship with a numerical variable: regression

56 / 84

Example question Model H0 Test Other

Does the expression of MYC
change (increase or decrease)

with (as we increase)
cholesterol (numerical

variable)?

MYC ∼ cholest β = 0 Regression
t-test

(Non-linear?)

Does the expression of any
genes in this array change with

cholesterol?

MYC ∼ cholest

P53 ∼ cholest

. . .

. . . ∼ cholest

β
MYC = 0

β
P53 = 0

. . .

β
. . . = 0

Many re-
gressions

Empirical Bayes.
FDR

Does the expression of MYC
change with cholesterol when
we control for other factors?

MYC ∼ cholest + Age + Sex β = 0 Regression
Type or relationship
of others (non-linear,
etc). Interactions

Does the expression of any
genes in this array change with
cholesterol when we control for

other factors?

MYC ∼ cholest + Age + Sex

P53 ∼ cholest + Age + Sex

. . .

. . . ∼ cholest + Age + Sex

β
MYC = 0

β
P53 = 0

. . .

β
. . . = 0

Many re-
gressions

Empirical Bayes.
FDR. Type or rela-
tionship of others
(non-linear, etc).
Interactions
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Recap: “Axes” of the tables

From one gene to many genes:
multiple testing and FDR
moderated statistics, empirical bayes, etc

From the factor/variable we care, to adding other variables
to account for additional variation (e.g., incorporating age,
sex, etc).
Whether the tests are comparing two means, or three or
more means, or using regression for fitting a line to a pair
of numerical variables.
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Stop!

In 1 minute summarize the key elements of all three tables
above.
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Subtleties

All of the stuff in the previous tables can be nicely modeled
as just different types of linear models.
We are assuming MYC and friends are a numerical,
continuous, variables. If they were counts (say, NGS) we
would use a similar framework, but with different statistical
models.
The paired t-test can be easily be seen as a simple case of
the third row of the first table (the variable you control for is
the subject id). What is this about? See next . . .
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Paired vs. non-paired
M

Y
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Non−tumor Tumor

60 / 84



Introduction p-values Multiple testing Design and analysis, I Design and analysis, II Appendix

Paired vs. non-paired
M

Y
C

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

11
12

13
14

15
16

17

Non−tumor Tumor

61 / 84



Introduction p-values Multiple testing Design and analysis, I Design and analysis, II Appendix

Linear models and the matched-pairs design

P53subject ,condition = Subject + Condition + e
If we remove Subject (do not use that info) . . .
. . . we move “Subject” to the e.
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Type of response variable

Continuous-like: microarray
Count: NGS
Categorical
Survival

Can we have a unified view of this mess?
Linear models and their extensions.
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Type of response variable

Continuous-like: microarray
Count: NGS
Categorical
Survival
Can we have a unified view of this mess?
Linear models and their extensions.
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Covariates: subjects have many characteristics

E.g., human subjects

Age
Sex
Hospital, region, date of diagnostic, . . .
Patients measured multiple times
Family relationships, same doctors, . . .
. . .
Include other variables to increase power (decrease
variance) and avoid biases
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More covariates

Even if there is no confounding, including covariates in
analysis can increase statistical power.
Why?
(Note: we use models to explain this.)
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Sample size

I choose, randomly, 2 men and 3 women from this class
and measure their height. Can I say anything about the
differences in height between sexes in the Spanish
population?

Significant results vs. repeatable results.
Each poorly conducted study is a wasted opportunity.
The argument of money . . . is it an argument?
See Dobbin and Simon, 2005 and 2007, Biostatistics.
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Sample size

I choose, randomly, 2 men and 3 women from this class
and measure their height. Can I say anything about the
differences in height between sexes in the Spanish
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Significant results vs. repeatable results.
Each poorly conducted study is a wasted opportunity.
The argument of money . . . is it an argument?
See Dobbin and Simon, 2005 and 2007, Biostatistics.
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What test to use?

Even in the simplest of cases (comparing two groups)
there are many ways to analyze the data.
Non-parametric vs. parametric statistics.
Non-parametric and permutation tests.
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Which is the experimental unit?

20 mice
10 assigned to drug A, 10 assigned to drug B
Each mouse, in one leg a corticoid ointment, on the other a
placebo ointment
ointment: nested within mouse
Which is the experimental unit?
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Two types of experimental unit: mouse, leg within mouse.
To compare drugs: use mice
To compare ointment: use leg within mouse
Interaction: we can study it
split-plot designs, mixed-effects models
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Replicates and pseudoreplicates

20 arrays, 10 of one kind, 10 of another
Scenarios

20 subjects total
5 subjects in each group, each subject measured twice
2 subjects in each group, each subject measure 5 times
5 families in each group, some with 1 representative, others
with 2, others with 3, . . .
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Blocking

Mice are “blocks”: ointment effect is within-mouse. We
keep mouse effects constant. Each mouse is its own
control.
“Block what you can, randomize what you can’t”
Randomization: a tool to deal with possible systematic
sources of variation that we cannot control and avoids
biases.
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Observational vs. experimental studies

Random assignment of treatments to subjects vs.
observational studies
Carefully use additional covariate: sex, age.
Prostate cancer: what is the control?
Controls: qualitative difference between observational and
experimental studies. (Randomization principle).
Inference with observational data a lot more tricky.
Complex interpretation.
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Real life is complicated . . .

A simple t-test or simple-whatever will rarely be the most
appropriate approach

When you go to GEO or ArrayExpress or . . . you must keep the
above in mind.
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1 Introduction

2 p-values

3 Control of multiple testing

4 Design and analysis, I

5 Design and analysis, II

6 Appendix
Permutation tests and t-test
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The logic of a permutation test

Define the statistic (e.g., differences between means).
Obtain their distribution under the null hypothesis (H0).
Calculate how likely our observed statistic is under the null
hypothesis.

(Permutation tests are very general approaches that can
be used for testing a variety of hypothesis —e.g., Dupuy
and Simon paper— but their use in real life requires a lot of
care.)
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The logic of a permutation test

Key idea: under H0 labels and values are not related.
That’s it!
How could we generate a data set that is compatible with
H0?
And another? . . .
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t-test to compare two groups

1 Compute the means
2 Subtract one from the other
3 Compute a quantity related to the variance of the

differences of the means (this comes from the variance of
each group).

4 Divide the difference in means by the standard deviation of
the difference in means.

5 Now we have a standardized difference: the t statistic.
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Differences between both procedures?

With a t-test: if certain assumptions are true, there is a
statistic of know distribution under H0. From here, the
p-value is immediate.
permutation test: we define a statistic. We do not derive
analytically its distribution. We obtain it numerically by
counting events generated under H0.
Permutation tests are not “assumption free”!!!
permutation tests might be testing a hypothesis we are not
interested in (e.g., dispersion vs. mean).
Some assumptions of parametric tests might be verifiable
and/or reasonable. And parametric models give us extra
stuff (model checking).
Numerically: are results similar?
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FDR: the algorithm

(Reiner et al., 2003, Bioinformatics)

(Note: a “step-up procedure”).

This procedure controls FDR. (Does not say “estimates”).
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Examples

What will I reject at 0.1?
0.1, 0.1, 0.1, 0.1
all

0.1, 0.01, 0.01, 0.01
all

0.2, 0.1, 0.1, 0.1
none

Threshold: 0.1
p ≤ threshold ∗ i/m?
0.1 ∗ 3/4 = 0.075

0.2, 0.075, 0.075, 0.075
last three
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Adjusted p-values

The results of a multiple testing procedure can be re-
ported as multiplicity adjusted p-values. As with the
regular p-value, each adjusted p-value is compared to
the desired significance level, and if smaller, the hy-
pothesis is rejected. Therefore, the way adjusted p-
values are used and interpreted remains conveniently
familiar, regardless of the adjustment procedure com-
plexity.

(Reiner et al., 2003, Bioinformatics)
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Adjusted p-values: FDR

For an FDR controlling procedure, the adjusted p-value
of an individual hypothesis is the lowest level of FDR
for which the hypothesis is first included in the set of
rejected hypotheses. Thus the adjusted p-value of P(j)

using the BH procedure, is PBH
(j) = minj≤i{P(i)

m
i }.

(Reiner et al., 2003, Bioinformatics)
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Examples of FDR-adjusted p-values

0.2, 0.08, 0.08, 0.08
0.2, 0.1067, 0.1067, 0.1067
0.08 * 4/3 = 0.1067; 0.08 * 4/2 = 0.16; . . .

p.adjust(c(0.2, 0.08, 0.08, 0.08),
method = "BH")

0.2, 0.08, 0.07, 0.07
0.2, 0.1067, 0.1067, 0.1067
0.08 * 4/3 = 0.1067; 0.07 * 4/2 = 0.14;

p.adjust(c(0.2, 0.08, 0.07, 0.07),
method = "BH")

83 / 84



Introduction p-values Multiple testing Design and analysis, I Design and analysis, II Appendix

0.2, 0.08, 0.05, 0.015
0.2, 0.1067, 0.1, 0.06
0.05 * 4/2 = 0.1; 0.015 * 4/1 = 0.06

p.adjust(c(0.2, 0.08, 0.05, 0.015),
method = "BH")

84 / 84



Intro Methods Error estimation Predictive ability Survival Added value Clustering Help!

BIBMS: Transcriptomics and statistics for
“omics”.

Part III. Classification and clustering

Ramón Díaz-Uriarte

Dept. Bioquímica
Universidad Autónoma de Madrid

Madrid, Spain
ramon.diaz@iib.uam.es

http://ligarto.org/rdiaz

November 2018
(Rev: e2dc3be)

1 / 82

http://ligarto.org/rdiaz


Intro Methods Error estimation Predictive ability Survival Added value Clustering Help!

License and copyright

This work is Copyright, c©, 2018, Ramón Díaz-Uriarte, and is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike License. To

view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a

letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California
94305, USA.

*****************************
Please, respect the copyright and license. This material is provided freely. If you use

it, I only ask that you use it according to the (very permissive) terms of the license:

acknowledging the author, not making money from copies or derivatives, and

redistributing copies and derivatives under the same license. If you have any doubts,

ask me.
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Outline

1 Introduction

2 Methods/Models/Algorithms for classification

3 Estimating the classifier’s error

4 Predictive ability

5 Survival analysis

6 Does this add anything?

7 Are there groups? Clustering

8 When to call the statistician
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Differentiate between groups of patients

Classification (or prediction if a continuous variable)

A classical problem in statistics and machine learning.

What do we want? A good classifier. Something that, given a
new sample, will assign it to its appropriate group.
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. . . clinical utility

Clinical validity predict risk of recurrence

Clinical utility predict benefit of a treatment over another: added value
when making decissions.

. . . when we already have conventional
classifiers/predictors

Does the new method/algorithm, based on genomic
data, improve our ability to predict a result, compared
to what we could predict without those genomic data?
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The dangers of “capitalizing on chance

Statistical context: many genes, few subjects. p � n.

Differentially expressed genes Risk of too many false positives
⇒ adjustments in the screening of p-values.

Classification/prediction Very easy to obtain algorithms that
classify, perfectly, our data, but not new data⇒
validate algorithms and classifiers

Hypotheses/questions Tempting to make them vague, or ask
none and wait until “the data say something”⇒
define objectives and how we will measure what
we are interested in.
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Classification/prediction: key ideas

All we care about is a good classifier.
We do not care about p-values.
We will have to choose some genes.
We will have to, ESPECIALLY, estimate the error of the
classifier.
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Tell me how it works (dime cómo funciona) . . .
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. . . vs. the black box
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Prediction: black box

Rules of the game: that it predicts (classifies) well.

We are not assessing the “truth” of the model. Only its
predictive success.

Almost all methods eliminate genes with redundant info for
classification: this limits interpretability anyway.
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Prediction vs. interpretability

Good classifiers need not be intuitively easy to understand.
p � n: many classifiers with similar predictive capacity but
different genes.
Black boxes ameliorate these problems (you do not worry
too much about them).

Inversions in the signs of coefficients
Genes shared between models

Do not jump between objectives: classify vs. interpret.
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Steps in the construction of a classifier with genomic
data

Selection of a classification algorithm.
Gene selection.
Classifier construction/training.
Estimate the error of the classifier.

13 / 82



Intro Methods Error estimation Predictive ability Survival Added value Clustering Help!

Some algorithms/models

Just to say some specific.
We will mention a few that work well.
There are lots we say nothing about.
“Follow the pros”: read reviews, follow recommendations,
and understand the methods you use.
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Reviews of methods.

Kuhn, and Johnson. 2013. Applied Predictive Modeling.
Springer. (***)
James et al. 2013. An introduction to statistical learning.
Springer. (***) (A PDF can be downloaded freely and legally from
their web page)

Malley et al., 2011. Statistical learning for biomedical data.
Cambridge University Press.
Shi et al. 2010. The MicroArray Quality Control (MAQC)-II
study of common practices for the development and
validation of microarray-based predictive models. Nature
Biotechnology, 28: 827–838.
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Review of methods and good practices.

(***): highly recommended
Tarca et al., 2013. Strengths and limitations of
microarray-based phenotype prediction: lessons learned
from the IMPROVER Diagnostic Signature Challenge.
Bioinformatics, 29: 2892–2899. (***)
Shi et al. 2010. The MicroArray Quality Control (MAQC)-II
study of common practices for the development and
validation of microarray-based predictive models. Nature
Biotechnology, 28: 827–838. (***)
Dupuy A, Simon R. 2007. Critical Review of Published
Microarray Studies for Cancer Outcome and Guidelines on
Statistical Analysis and Reporting. J Natl Cancer Inst., 99:
147–157. (***)
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A great presentation

(used to be here: http:
//www-onderzoek.lumc.nl/HumaneGenetica/mgc/
2005/presentations/Classification_Wessels.pdf
no longer available)
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Nearest mean

As it says: the closest mean
(Next two slides from http://www-onderzoek.lumc.nl/HumaneGenetica/mgc/

2005/presentations/Classification_Wessels.pdf)
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(Taken from Lodewyk Wessels, Classification_Wessels.pdf)
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(Taken from Lodewyk Wessels, Classification_Wessels.pdf)
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KNN

K-nearest neighbor.
Simple non-parametric rule:
Predicts the sample of a test case as the majority vote
among the k nearest neighbors of the test case.
To decide on “nearest” we often use the Euclidean
distance, but other measures of proximity are possible.
The number of neighbors used (k) is either fixed or chosen
by cross-validation.
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(Taken from Lodewyk Wessels, Classification_Wessels.pdf)
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DLDA

Diagonal Linear Discriminant Analysis.
A form of discriminant analysis (optimal when class
densities have the same diagonal variance-covariance
matrix).
Simple linear rule: a sample is assigned to the class k
which minimizes Σp

j=1(xj − x̄kj)
2/σ̂2

j , where p is the number
of variables, xj is the value on variable (gene) j of the test
sample, x̄kj is the sample mean of class k and variable
(gene) j , and σ̂2

j is the (pooled) estimate of the variance of
gene j .
Unrealistic assumption, but works very well (and often
better than other forms of discriminant analysis that require
estimation of many more parameters).
Also called “Naïve Bayes.”
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Random Forest

An ensemble of classification trees.
Each tree is grown using a bootstrap sample of the data
set, and at each node only a random subset of the original
variables is examined.
Interactions are implicitly considered.
Provides ranking of variable importance.

24 / 82



Intro Methods Error estimation Predictive ability Survival Added value Clustering Help!

Logistic regression

We model the (logit of the) probability of belonging to a
class as a linear combination of features. Extension of
linear models to binary data.
As well as DLDA, this is a “classic” of statistics.
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SVM

Support vector machines.
Obtain the best separating hyperplane between classes;
hyperplane is located so that it has maximal margin (i.e.,
so that there is maximal distance between the hyperplane
and the nearest point of any of the classes).
When the data not separable, there is no separating
hyperplane; in this case, we still try to maximize the margin
but allow some classification errors subject to the
constraint that the total error (distance from the hyperplane
in the “wrong side”) is less than a constant.
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SVM: separable case

(Taken from Burgues, 1998, Data Mining and Knowledge Discovery
2, 121-167)
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SVM: non-separable case

(Taken from Burgues, 1998, Data Mining and Knowledge Discovery
2, 121-167) 28 / 82
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Gene selection

Filter approaches: select before training the classifier.
Univariate
Multivariate

Wrapper approaches. Within the classifier. A few infamous
examples: stepwise regression et al. (There are
non-infamous examples too).

We might obtain equally good classifiers with very
different sets of genes.
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Estimating the classifier’s error (or “validating the
classifier”)

A sample with 50 healthy subjects and 50 diseased ones.
We build a classifier with those 100 samples, and on those 100
we make a mistake of 10%.

Can we use that 10% as a reasonable estimate of the error we
would make with new samples?
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Resubstitution

31 / 82
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“Split-sample”, “holdout validation”, “data splitting”
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“Cross-validation”
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(Dupuy and Simon, 2007, JNCI, 99)
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Suppose 100 subects, 50 healthy, 50 diseased.
Select at random 10 (“testing set”).
Usae the other 90 to build the classifier (“training set”).
Evaluate the classifier with the first 10.
Repeat the process another 9 times (until all subjects have
been used exactly once in the “testing set”).
We have 10 estimates of error, we compute the mean, and
we now have an estimate of the error we would make with
a new sample.
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Cross-validation (3-fold, here)

35 / 82

(Kuhn and Johnson, 2013. Applied predictive modeling, Springer



Intro Methods Error estimation Predictive ability Survival Added value Clustering Help!

Bootstrap
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Error: at least no larger than

the proportion of individuals in the least abundant class
E.g., 100 healthy and 10 diseased. If I always say
“healthy”, my largest error is 10 %.
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Independent validation

Independent validation, with other samples, by other groups:
necessary
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Beware with “selection bias”

What if we have done gene selection?

Select the 100 genes with smallest p-value.
Build the classifier.

39 / 82



Intro Methods Error estimation Predictive ability Survival Added value Clustering Help!

The validation process has to include the gene selection
procedure. We must do the gene selection in each training set.
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NEVER DO THIS!
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(Dupuy and Simon, 2007, JNCI, 99)
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CV and others

There are related techniques, such as bootstrap, etc.
To leave apart a single testing set is a bad idea.
Cross-validation: can have high variance.
Best approaches (?):

A variant of CV (repeated splits, 50 times 10)
Bootstrap (632+)
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Classification, number of genes, etc

And how do we choose the number of genes?

You’ll do an exercise with
http://tnasas.bioinfo.cnio.es
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Validating what?

. . . what is it we are validating? how do we measure predictive
ability?
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Specificity and sensitivity

Predicted
True Diseased Healthy
Diseased True Positive (TP) False Negative (FN)
Healthy False Positive (FP) True Negative (TN)

Sensitivity = TP
TP+FN

Specificity = TN
TN+FP
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Error rates or predictive values?

(From van Belle, 2002, p. 96).
Prevalence of colorrectal = 0.003
Hemoccult test: sensitivity: 50%; specificity: 97%.
I am positive!!!

The probability of having colorrectal cancer is only 5%.
Eh?
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I want to know: P [Diseased |positive]

Prevalence = P(D)

P(D|p) = P(D∩p)
P(p)

P(D ∩ p) = P(p|D)P(D) (Bayes rule)
P(p) = P(p|D)P(D) + P(p|Dc)P(Dc)

P(p|D) = TP/(TP + FN) = Sensitivity
P(p|Dc) = 1− Specificity = FP/(FP + TN)

P [Diseased |positive] = = P(D)∗Sensitivity
P(D)∗Sensitivity+P(Dc)(1−Specificity)

P(Dc) = 1− P(D)
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0.003 ∗ 0.5
0.003 ∗ 0.5 + 0.997 ∗ 0.03 = 0.048
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P [Diseased |positive] = Positive predictive value

P [Healthy |Negative test ] = Negative predictive value =

= (1−P(D))Specificity
(1−P(D))Specificity+P(D)(1−Sensitivity)

Beware where prevalence estimate is coming from!!!!!
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ROC curves
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Predictive ability?

p-values, hazard-ratios, regression slopes, etc, are
measures of association, not of predictive ability.

Measuring predictive ability: how similar are predicted and
observed?
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Proportion correctly classified

Probably NOT what you want.
Easily “game-able”.(From posts by Frank Harell)

You can manipulate the proportion classified correctly in a
number of silly ways. The easiest way to see this is if the
prevalence of Y=1 is 0.98 you will be 0.98 accurate by
ignoring all the data and predicting everyone to have Y=1.
Another way to saying all this is that by changing from an
arbitrary cutoff of 0.5 to another arbitrary cutoff, different
features will be selected. An improper scoring rule is
optimized by a bogus model.

And we have not even considered asymmetric costs of
mistakes.
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Measuring predictive ability

Brier score related to Σi(Yi − qi)
2, where Yi is the real status

(e.g., class A vs. class B —if A = 1, if B = 0) and qi
is the predicted probability of being of class A.

Concordance index (C-index) Probability that, for all pairs of
subjects where one is of one kind and the other of
another kind, the patient with larger predicted
probability of being of class A is really A. Related
to ROC curves (later).

Area under ROC curve As it says: area under ROC curves

Beware: Brier score, C-index, ROC: using “out of bag”
predictions!!
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Lots of data are survival data

Time until I have to change the light bulb of my living room.
Time until death.
Time until . . .
(no, not everything qualifies).
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Introduction to survival models

Time until “failure” (death, relapse, change of state, etc)
Often censored:

We observe min(T , c) where T is life duration, time to
death, and c the “censoring time”.

Distributions such as exponential, weibull, etc
We should NOT discretize nor use linear regression. Use
methods that are appropriate for the type of response
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Buzz words to remember

Cox model: like a linear model but we model hazard rates
(h(t), “instantaneous rate of death at t given that you are
alive at t .”)
Parametric survival models: model the distribution of
time to death.
Log-rank test: a way of comparing survival curves.
http://signs.bioinfo.cnio.es/Examples/
CommentedExample/results.html
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Cross-validation, estimating predictive ability, etc

All we have seen before applies.
Estimating predictive ability is more complicated.
Different criteria and different weights at different times
(early vs. late events, for example).
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Tools

Not many.
Beware of possible issues in the evaluation of predictive
performance.
http://signs2.bioinfo.cnio.es
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Clinical covariates

We often have clinical covariates
How are we to include that info?
Frequently predictors based on other indices
Does gene expression improve prediction?
Key question: Does using gene expression add anything?
Is it worth it?
Does the new method/algorithm, based on genomic
data, improve our ability to predict a result, compared
to what we could predict without those genomic data?
Worth it . . . for what? Clinical utility vs. basic knowledge.
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Why would predictions not improve with expression
data?

Expression data can be just noise.
Expression data are redundant given the clinical covars.
(which are often cheaper and faster to measure).
(BEWARE: no implication about causality. This is irrelevant
in this predictive scenario.)
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Reasons for caution

Truntzer et al. 2008.BMC Bioinformatics, 9: 434. Survival
data.
“ability of the model to predict outcome with new datasets
is overestimated” with expression data.
No optimism with clinical covars.
They are two very different kinds of variables.
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Simple solutions

“Put everything in the same bag, and apply the usual
methods”
But “Clinical covariates come first”
“Same bag” approach can affect negatively to clinical
covars if they are correlated with gene expression.
Coefficients of clinical covars must be estimated without
penalization. And a need if we want to compare with
models that only have clinical covars (see Binder and
Schumacher).
“Litmus test”: if genes do not provide anything, final model
should be as good as if it only had clinical covars
(Boulesteix et al., 2008).
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Simple solutions (II)

If there are discrete groups (sex, tumor marker) do
separate analysis
But we often have small sample sizes.
Does not answer the original question directly: do gene
expression data improve anything?
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Simple solutions (III)

Two classifiers: only with clinical covs. and only with gene
expression data.
We can compare models (though not obvious: they are not
nested).
Does not answer the basic question.
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Not so simple solutions

Do not penalize or remove clinical covariates.
Adjust for those.
Then add “omics” data.
Assess if omics data adds something to previous model
with only clinical covariates.
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Conclusions (?)

Many reasonable methods with similar solutions. Includes
methods that are rather straightforward (DLDA, KNN).
Instability and multiplicity of solutions: are they a problem?
Which is the best number of genes is difficult to tell.
Why are we doing this? Biological
interpretation/understanding or for diagnostic test
development?
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Are there groups?

Can we find groups of genes that behave in a similar way,
but different from other genes?
Likewise for subjects?

“Class discovery”, clustering.
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Only makes sense if . . .

we do not know, before hand, that there are different groups of
genes/subjects.
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Two needed pieces

What does it mean to “behave similarly” and measuring
similarity.

Describing how we will group based on those similarities.
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First piece: similiarity (or “dis-similarity”)

Distances (e.g., Euclidean distance).
Correlations.
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We end with a matrix of similarities between all pairs of
subjects or genes.

Now what?

72 / 82



Intro Methods Error estimation Predictive ability Survival Added value Clustering Help!

s1 s2 s3 s4
s1 - 2 7 3
s2 - - 8 4
s3 - - - 9
s4 - - - -

???
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Second piece: clustering algorithms

Hierarchical:
Divisive
Agglomerative (UPGMA again!!!)

No hierarchical (need to specify number of clusters).
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Problems ...

What measure of similarity should we use?
What is the appropriate clustering algorithm?
Should we use all genes when we cluster subjects?
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Precautions

Clustering is class discovery: it is an exploratory tool, not a
confirmatory one.
Clustering ALWAYS returns clusters, whether or not there
is any real structure.
If a cluster is “relevant” and “stable” is a different question.
Clustering is not the right tool if we know about groups
before hand.
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t-test and cluster

What do you think about the idea of doing clustering and then a
t-test?
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An interesting idea: searching for transcription factors

Cluster genes
Search in up-stream regions for the most frequent l-mers
(Details and references in Cristianini and Hahn 2006 and
Harmer et al. 2000.)
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Tools

R and BioConductor: several packages.
Many, many, many (way toooooo many?) web-based tools.
Some cited on first set of slides.
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Things to read

Definitely, take a look at: Dupuy and Simon, 1997, Critical
Review of Published Microarray Studies for Cancer
Outcome and Guidelines on Statistical Analysis and
Reporting, J. Natl. Cancer Inst., 99: 147-157.
Many other refs.

80 / 82



Intro Methods Error estimation Predictive ability Survival Added value Clustering Help!

Statistical autopsies

To call in the statistician after the experiment is done
may be no more than asking him to perform a post-
mortem examination: he may be able to say what the
experiment died of.

Sir Ronald Aylmer Fisher, Indian Statistical Congress,
1938
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. . . the alternative

We want to foster the team concept, not the image of
a statistical policeman arriving at the scene of a crime.
Let’s nip those false positives in the bud, not in the gal-
leys.

R. G. Easterling, The American Statistician, 2010
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