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Abstract

We review well accepted methods to address questions about differential expres-
sion of genes and class prediction from gene expression data. We highlight some
new topics that deserve more attention: testing of differential expression of specific
groups of genes, intra-group heterogeneity and class prediction, gene interaction
in predictors, visualisation, difficulties in the biological interpretation of predictor
genes and molecular signatures, and the use of ROC[Receiver Operating Charac-
teristic curve]-based statistics for evaluating predictors and differential expression.
We end with a review of some serious problems that can limit the potential of these
methods; we focus specially on inadequate assessment of the performance of new
methods (due to inadequate estimation of error rates and to the use of few and
“easy” data sets) and failure to recognise observational studies and include needed
covariates. A final comment is made about the need for freely available source code.
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1 Chapter objectives

Reviews of the analysis of gene expression data (e.g. Drăghici, 2002; Parmigiani et al.,
2003; Simon et al., 2003; Slonim, 2002; Speed, 2003; Tumor Analysis Best Practices Work-
ing Group, 2004) often mention three objectives: a) class comparison, or finding/ranking
of differentially expressed genes; b) class prediction or prognostic prediction; c) class
discovery, also know as clustering or unsupervised analyses. We will not discuss class
discovery or clustering here (it is discussed elsewhere on this book) and will concentrate
on class comparison and class prediction. For the remaining two broad type of problems,
this chapter has three main objectives: a) To bring a statistician, computer scientist, or
computational biologist quickly up to speed by providing pointers to the literature on well
accepted and standard methods 1. b) To emphasise some topics that deserve more atten-
tion and are open to additional theoretical, empirical, and computational contributions.
c) To alert editors, reviewers, and general practitioners to several serious problems that
can undermine the full potential of these techniques.

2 Class prediction and class comparison

Class comparison asks if different classes of subjects (e.g., lung cancer and prostate
cancer patients) differ in their gene expression; the result is often a list of genes ranked by
their degree of differential expression between classes; this objective can alternatively be
to examine whether other non-categorical variables (such as expression of certain proteins
or survival) are associated to gene expression. Class prediction or prognostic prediction
tries to predict the class membership (or survival or protein expression or any prognostic
variable) of a set of subjects given their gene expression data. Although related, these are
different objectives that answer different biological questions and require different methods
(unfortunately, this difference is not always recognised in empirical work). Ranking genes
often precedes trying to use genes for class prediction (see also Sackett and Haynes, 2002),
but genes that show large expression differences are not necessarily good predictors (e.g.,
p. 299 of Whitfield et al., 2003).

3 Class comparison: finding/ranking differentially ex-

pressed genes

The most common procedures analyse each and all of the genes of the array, “asking the
same question” (e.g., “is this gene differentially expressed between prostate and lung can-
cer patients?”) for each gene of the array. In contrast, when there are prespecified
groups of genes, one can ask whether that subset of genes, as a whole, shows evidence of
differential expression (e.g., “are genes X, Y, Z, which are involved in cell cycle, differen-
tially expressed between prostate and lung cancer patients?”).

Specially when asking the same question for each gene of the array, there are often
two different objectives: to obtain a list of genes for which “their differential expression is
statistically significantly different”and to rank genes based on some measure of how distant
is the expression level between conditions (and this measure can be the p-value computed
before) or how likely they are to differ. These objectives are related, but measuring

1Lack of space precludes a full review; other lists of references can be found in http://www.biostat.
umn.edu/~weip/course/ge/syl1.html and http://biosun01.biostat.jhsph.edu/~gparmigi/688/
readings.html, from two well-known statisticians
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the likelihood of differential expression requires additional assumptions, and obtaining p-
values is more delicate than simply ranking. Even when p-values are obtained, however,
they are used as informal rules of inference and to guide future experiments, rather than
to provide “black or white” answers.

Asking the same question for each gene of the array

Widely accepted methods, with available software, involve the use of standard statistical
tests (e.g., t−test for two-class comparisons, ANOVA for multi-class comparisons, Cox
models for survival data, etc), where analyses are carried out gene-by-gene (reviews in
Cui and Churchill, 2003; Dudoit et al., 2002 b; Reiner et al., 2003; Simon et al., 2003,
ch. 7). These analyses, although conducted gene-by-gene, need to take into account that
thousands of null hypotheses are being tested (one for each gene): if we were to consider
any of the genes with a “rejected null” as differentially expressed, we would end up with
many false rejections. Appropriate correction for multiple testing is often conducted
using either control of the Family Wise Error Rate or the False Discovery Rate.
Controlling the Family Wise Error Rate refers to controlling the probability of making one
or more false discoveries, or falsely rejecting the null, over the whole family of tests; this
approached was detailed in Westfall and Young (1993) and its application to microarrays
was pioneered by Dudoit et al. (2002 b). In contrast, the False Discovery Rate approach
controls the expected proportion of erroneously rejected nulls among the rejected hypothe-
ses; FDR controlled has been worked on mainly by Yoav Benjamini, Daniel Yekutieli, and
their collaborators (see http://www.math.tau.ac.il/~roee/index.htm) for lists of ref-
erences and links; a recent review and applications to microarrays is Reiner et al. (2003);
other approaches related to, or variations of, FDR are Storey (2002); Storey and Tibshi-
rani (2003) and references therein; Ge et al. (2003) compare and discuss most of these
different approaches. Detailed discussion of whether control of FWER or FDR is the most
appropriate for a given situation is beyond the scope of this chapter; however, in many
exploratory studies control of FDR is probably what most researchers need. In addition,
methods for control of FDR do not require the subset pivotality assumption (Westfall and
Young, 1993) to hold, and therefore are applicable to a wider range of tests; in addition,
although control of FDR, as originally proposed by Benjamini and Hochberg (Benjamini
and Hochberg, 1995), works only for independent (or positively regression dependent)
tests statistics, the results in Reiner et al. (2003) show that violation of this assumption
is generally inconsequential and there are also resampling-based FDR approaches that
account for the dependence of the tests statistics.

Most gene-by-gene approaches, when computing the statistic for each gene, do not use
the information contained in the rest of the genes, which could be wasteful; hierarchical
Bayes or empirical Bayes methods allow to “borrow information” from all of the
genes in the array when making inferences about each of the genes (see Smyth, 2004)2.
Although not as well known as the above methods, Parmigiani and colleagues (Garrett
and Parmigiani, 2003; Parmigiani et al., 2002) model gene expression using latent cate-
gories that are interpreted as a gene being over-expressed, under-expressed, or at baseline

2Another review of “moderated” or “modified” t and F statistics is Cui and Churchill (2003). The
approach developed by Gordon Smyth (Smyth, 2004) is applicable to a wide range of linear models (in
contrast to some earlier approaches, that were only suited for specific comparisons), and an R (http://
www.R-project.org) package, limma, is available from Bioconductor (http://www.bioconductor.org),
and also incorporates accounting for multiple testing. However, although applicable to linear models,
borrowing strength from all other genes is not as yet implemented in an easy to use tool for problems
such as censored data, often analysed with Cox models.

4



expression3; these models allows for denoising of the expression data, can enhance inter-
pretability and help with visualisation, and ease comparisons among platforms. Finally,
Bickel (2004) has argued for testing customised null hypothesis that redefine differ-
ential expression in a biologically meaningful way (e.g., any non-zero difference is not
necessarily biologically relevant), and use ROC-based statistics4 (see below, section 5).

Asking questions about prespecified groups of genes

Among the tens of thousands of genes in an array, there might be prespecified sets of genes
(e.g., those involved in cell cycle, or those found as relevant in a previous study) about
which we might want to ask whether, as a whole, these subset of genes shows evidence
of differential expression between groups of patients (or whether the expression of the
whole set of genes is related to some other clinical variable, such as survival). Goeman
et al. (2004) have proposed a method to test whether the expression pattern of a group
of genes is related to some outcome of interest (be it class membership, survival, or a
non-censored continuous variable). Their approach exploits the connection between dif-
ferential expression among groups and predictability of clinical outcome, and the problem
of number of genes being much larger than the number of samples is overcome using pe-
nalised regression models5. This method constitutes a very promising way of conducting
tests of differential expression of subsets of genes6.

A different approach has been suggested by Mootha et al. (2003), who examine if the
members of a set of genes are enriched (i.e., a proportion larger than expected) among the
most differentially expressed genes between two classes. This method should be applicable
to any other type of comparison, such as multiclass comparisons (via ANOVA) or survival
data. The main differences between the approaches of Mootha et al. (2003) and Goeman
et al. (2004) are listed in Table 1. Although with a different objective, a method similar
to that of Mootha et al. (2003) was proposed in Dı́az-Uriarte et al. (2003) (see also Al-
Shahrour et al., 2004); as in Mootha et al. (2003), the approach in Dı́az-Uriarte et al.
(2003) only works if genes with similar ranking or order belong to the the same set but,
in contrast to Mootha et al. (2003), the approach of Dı́az-Uriarte et al. (2003) will detect
sets of genes that are not extreme in their statistic of differential expression; however, it
is a method targeted towards exploratory purposes rather than for statistical testing of
prespecified hypotheses.

4 Class prediction and prognostic prediction

Overview

As explained above, the goal here is to predict the clinically relevant characteristic of a
subject (be it class membership, survival, prognosis, or any other variable of interest)

3They use a bayesian hierarchical mixture model —with uniform distributions for abnormally high
and abnormally low expression and normal distribution for baseline expression—, and the model returns,
for each gene and sample, the probability that it is over-, under-, or baseline-expressed. Software —R
code— is available from http://astor.som.jhmi.edu/poe/. See also Newton et al. (2004) who use a
semiparametric hierarchical mixture model for a somewhat similar problem.

4R code is available from http://www.davidbickel.com.
5Penalised regression models are related to shrinkage methods, such as ridge regression, and models

with random effects, and will drive many coefficients towards zero; they allow the fitting of models even
when the number of samples (i.e., arrays) is smaller than the number of variables (i.e., genes).

6Code is available as package “globaltest” from Bioconductor.
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given the genetic profile of this subject. This is also an area of extremely active research,
where the disciplines of statistics and machine learning have contributed much; Table 2
shows widely accepted methods and references.

Available reviews (see Table 2) show that relatively simple and well known methods
such as k-Nearest Neighbour (KNN) and Diagonal Linear Discriminant Analysis (DLDA),
together with Support Vector Machines (SVM), perform very well in most classification
tasks in microarray data. Because of their performance and free availability7 in quality im-
plementations, DLDA, KNN, and SVM should probably be used routinely as benchmarks
when proposing new methods.

Five specific issues

We will discuss five issues that probably deserve more attention. First, for the user it
quickly becomes evident that many methods yield non-unique solutions (see also section
6.3) or, in other words, can return different solutions of very similar quality (e.g., pre-
diction error rate), which itself leads to the question of how to choose among solutions.
A direct way of approaching this problem is via model combination and model av-
eraging. Model averaging is well known among Bayesians (e.g., Hoeting et al., 1999;
Wasserman, 2000), and theory shows that a (weighted) average of predictions from sev-
eral models should perform better (at least no worse) than predictions from any single
model. Bayesian Model Averaging approach is not without problems, however, specially
selection of priors and computation, and model definition. Model averaging is also avail-
able outside the Bayesian camp; stacking was initially proposed by Wolpert (1992) in
the machine learning community, and later developed by Breiman (1996) and Ting and
Witten (1999) (see also Hastie et al., 2001; Ripley, 1996, for short accounts). AIC-based
model averaging has been developed by Buckland et al. (1997) and Burnham and Ander-
son (2002). Somorjai et al. (2002) show succesfull examples of stacking applied to MR and
IR spectra8. Finally, random forests do a kind of model averaging by using an ensemble
of trees.

Regardless of which model(s) are used, two general problems can affect all mod-
els/algorithms. First, most of the available methods assume additive effects of genes.
Non-additive relationships or interactions, also called synergistic (or antagonistic) effects,
are present when the outcome (e.g., being of class A) depends no just on the sum of the
independent contributions of X and Y, but on their combined effects. Non-additive rela-
tionships are likely both between genes (e.g., the snail [NM 005985] gene) and between
genes and other factors (section 6.4). Random forests (Breiman, 2001a; Liaw and Wiener,
2002) implicitly incorporate interactions as they are an ensemble of classification trees,
but the actual interactions are not easy to see. Boulesteix and Tutz (2004); Boulesteix
et al. (2003) have attempted to explicitly search for patterns of interactions and use
them in predictive models. Second, the predictive capacity of many models can be
hampered by unrecognised heterogeneity within classes that are regarded as ho-
mogeneous. Not much work has been done in this area. This problem, for instance, was
recognised in the past (e.g. Rosenwald et al., 2003) and is dealt with by Munagala et al.
(2004)9.

7For instance, in R, DLDA is available in package “sma”, KNN in package “class” (part of the VR
bundle), and SVM in package “e1071”, the latter from the libsvm library of Chang and Lin (2003).

8However, the author has attempted, without success, both stacking and AIC-based model combina-
tion of logistic and multiresponse linear regression with genomic data.

9Unfortunately, their code depends on non-free software.
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A final set of problems involves the biological interpretation of class prediction
models (together with making sense of information for potentially tens of thousands of
coefficients). Most methods for building predictors tend not to return models that allow
for easy biological interpretation of why and how those predictors are used, and how
the genes in the predictors affect and relate to the class prediction. These problems are
detailed in Dı́az-Uriarte (2004) and an example are methods that use dimension reduction
via PCA or PLS, where all genes have loadings on all the components, making it virtually
impossible to interpret the biological meaning, if any, of the components10.

Visualisation methods can help with biological interpretation in this task. For mi-
croarray data the biplot, as extended by Pittelkow and Wislon (2003)11, is particularly
useful, specially use of the GE-biplot both before and after selecting genes according to
different criteria of relevance.

In addition, “molecular signatures” or “gene expression signatures” are key
features in many studies in cancer research (Alizadeh et al., 2000; Golub et al., 1999;
Pomeroy et al., 2002; Rosenwald et al., 2002; Shaffer et al., 2001; Shipp et al., 2002) and
seem to imply the idea of coordinate expression of subsets of genes, so that some of these
sets of coordinate expression would be related to some criterion of interest (e.g., cancer
type, or survival) (for an almost definition of a signature see p. 375 in Shaffer et al., 2001).
Recently Stegmaier et al. (2004) provide a very interesting example of a high-throughput,
generic, method for screening of compounds that induce differentiation of leukaemia cells,
based on gene expression signature of five genes; so gene expression signatures work as a
surrogate for a biological state. In spite of their apparent relevance, however, there seems
to be no approach for identifying molecular signatures. Recently, we proposed a method
that is explicitly designed to try to identify molecular signatures: it finds sets of genes
that are tightly coexpressed and that can be used as successful predictors (Dı́az-Uriarte,
2004). This method could also help uncover situations that are inconsistent with the
assumptions underlying the existence of a few, easily interpretable, signature components
of coexpressed genes. However, there are several unsolved issues. On the one hand, the
implicit model underlying Dı́az-Uriarte (2004) is one where most of the genes are not rele-
vant for prediction, relevant genes are involved in one and only one“signature component”
(i.e., non-overlapping signature components), and the signature components are common,
and behave similarly, in different groups; there are, however, richer biological models for
biological signatures. In addition, there are related issues regarding differences in patterns
of gene coexpression within and among-groups and potential instability concerns (see also
section 6.3) about some results (see sections 3.2 and 3.3 in Dı́az-Uriarte, 2004). Some of
these issues might be solved with extensions to the method, and some might require com-
pletely different approaches. For example, modifications of the Plaid model of Lazzeroni
and Owen (Lazzeroni and Owen, 2002) (see also Turner et al., 2004), which might allow a
more principled, model-based, approach to the problem, within a richer class of models;
or an extension of the simultaneous clustering and classification approach in Jörnsten and
Yu (2003), where we could add normal mixture models with restrictions on the covariance
matrix for clustering; or an approach based on the latent class methods of Parmigiani
and colleagues (Garrett and Parmigiani, 2003; Parmigiani et al., 2002), where signature
components are based on under-, over- or baseline expression (instead of expression lev-
els), and potentially non-overlapping sets of genes for different classes. Work along these
lines is currently in progress in our group. In any case, regardless of the exact method

10Naively interpreting components using loadings or eliminating genes with small loadings is often not
justified and can lead to unexpectedly suboptimal solutions (Cadima and Jolliffe, 2001; Jolliffe, 2002)

11R code is available from Y. Pittelkow on request (see http://cbis.anu.edu.au/software.html).
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used, it is also relevant that the search for molecular signatures highlights that finding
a few sets of genes with biological interpretability can be worth even if it leads to small
loses in predictive performance (see also Somorjai et al., 2003) because good classification
performance, per se, does not shed any light into the underlying biological or clinical
phenomena.

5 ROC curves for evaluating predictors and differen-

tial expression

Specially for the two-class setting, common measures of performance (e.g. Baker et al.,
2002; Hastie et al., 2001; Pepe, 2003) are Sensitivity, or True Positive Rate, the prob-
ability of predicting a positive outcome when the true state is positive (i.e., TP

TP+FN
in

Table 3) and Specificity, the probability of predicting a negative outcome when the true
state of a case is negative (i.e., TN

TN+FP
)12.

Sensitivity and Specificity are often used to construct a Receiver Operating Character-
istic (ROC) curve13. A ROC curve (see, e.g., figure 1) (e.g. Pepe, 2003; Pepe et al., 2001;
van Belle, 2002, ch. 4) is a plot of Sensitivity in the ordinate against one minus Specificity
or the False Positive Rate (i.e., = FP

TN+FP
) in the abscissa. In other words, a plot of the

probability of a hit against the probability of false alarm (Duda et al., 2001). This shows
us how the sensitivity and the false positive rate change as we modify the threshold that
classifies a subject as a member of one class or the other. In addition, we can use as a
statistic the “Area under the curve” for a ROC curve, which is “(. . . ) an overall measure
of classification accuracy over all possible decision thresholds” (Bickel, 2004; Pepe, 2003).

ROC curves and ROC-based statistics are widely (and successfully) used to evaluate
the diagnostic utility of medical tests (e.g., X-rays, ultrasounds, biochemical tests, etc, as
reviewed in the excellent book by Pepe, 2003). It seems reasonable that similar approaches
could be used with microarray data, specially since ROC-based statistics are very flexible
devices that allow us, for example, to model covariate effects on the ROC curves, and to
combine multiple test results (see Pepe, 2003, for review). As mentioned above (section
3), Bickel (2004) and Pepe et al. (2003) have argued for the use of ROC-based statistics
to rank genes. These authors (see also Xu and Li, 2003) argue that ranking genes using
ROC-based statistics is more meaningful than using t- and F-based statistics or p-values.
Using the area under the ROC curve for two groups is a measure of differential expression
that also provides information on the discriminatory capacities of genes: the empirical
area under the ROC curve is equal to the probability that a randomly selected patient
from one of the groups will have a larger expression value than a randomly selected patient
from the other group (Bickel, 2004; Pepe, 2003), and this summary, from the clinical or
biological perspective, is often much more meaningful than a t-statistic or a p-value. In
addition, the area under the ROC curve is equivalent to the Wilcoxon rank sum statistic
(≡Mann-Whitney U statistic), and thus it is a distribution-free rank statistic (Pepe, 2003;
Pepe et al., 2003). Besides the area under the whole curve, Pepe et al. (2003) suggest

12Lemon et al. (2003) have argued that the Positive-predictive value (PPV), “(. . . ) the likelihood
that a positive test result indicates a true positive” (i.e., TP

TP+FP ) can be more relevant than sensitivity
and specificity; however, this needs to be done carefully. In fact, for cancer screening the Predictive
Value Positve (PVP) (similar in spirit to the PPV) and the Predictive Value Negative (PVN) are
probably more important than the sensitivity and specificity, but they must be computed taking into
account the prevalence, and not just the entries from the Table 3, as explained in Baker et al. (2002);
Pepe (2003); van Belle (2002). This caveat is particularly important for very low prevalence diseases.

13The package ROC in Bioconductor offers several utilities for building and using ROC curves.

8



using the empirical estimates of the ROC at a given False Positive Rate, t0, ROC(t0),
and the partial area under ROC at t0, pAUC(t0), as measures of differential expression.
These statistics do depend on t0, and a reasonable t0 could be the False Positive Rate
that is acceptable in practice: when screening asymptomatic people, where prevalence of
cancer is very low in average risk populations, it is important to keep the False Positive
Rate extremely low because otherwise there would be large numbers of people undergoing
expensive and invasive procedures (Baker et al., 2002; Pepe et al., 2003).

6 Caveats and admonitions

6.1 Estimating the error rate of the predictor

To evaluate the performance of a predictor, it is common to provide the error rate of the
predictions. However, many papers, including “high-profile” ones, report error rates that
are severely biased, leading to overoptimistic claims about the performance of different
methods. This is a most unfortunate situation because lack of appropriate rigour in
the application and adherence to appropriate rules of evidence undermines trust in the
promises of these technologies. These severe problems were addressed in the bioinformatics
literature in Ambroise and McLachlan (2002) and Simon et al. (2003). In spite of the
seriousness of the problem, the practice of reporting severely biased error rates is still
common, and this has prompted a recent review (Ransohoff, 2004) that tries, once again,
to alert users, reviewers, and editors against computing, reporting, and accepting overly
optimistic error rates. We will review here the two most common problems, remembering
that our objective when providing an estimate of the error rate is to provide an estimate
of the likely error rate we will make when we apply our classifier to new data sets from
the same population.

On possible problem is reporting the“resubstitution rate”, the error rate computed
from the very same observations that were used to build the classifier, because the resub-
stitution error rate is severely biased-down due to overfitting: if we fit a classifier to a
data set, we can expect it to “adapt to” some peculiarities of the data, which will make it
work well with those data, but might lead it to work poorly with data not yet seen by the
classifier or learner. This problem is even more serious with microarray data, where there
are thousands of genes that can be part of a predictor. With so many variables, and so few
samples, it is very easy to find a predictor that works perfectly in a completely random
data set (see, for example, Fig. 8.4 in Simon et al., 2003). To solve this problem either
cross-validation or bootstrap have been used; both methods build the predictor using a
subset of the data, and then predict the values for the remaining data, thus insuring that
the predictions are from data not used for the training.

A second common problem is to carry out the cross-validation after the gene selection:
all samples are used for gene selection, and the cross-validation process does not include
gene selection. This leads to very optimistic estimates of the error rate, as shown in
Ambroise and McLachlan (2002) and Simon et al. (2003) because we incur in a problem
similar to overfitting when the gene selection is carried out. The solution is to perform
cross-validation or bootstrap so that all steps of the analysis (including gene selection,
but also other potential steps such as imputation) are included in the cross-validation14.

14Of course, all these comments apply to other approaches, such as stepwise, forward, and backward
selection methods in linear or logistic regression; in addition, these selection methods are well known for
their instability and their leading to biased p-values (e.g., section 4.3 in Harrell, 2001). Anyway, these
variable selection methods ought to be subject, too, to cross-validation or bootstrap.
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Whether cross-validation (and what size of folds) or bootstrap (and what type of boot-
strap) should be used is beyond the scope of this review (see Ambroise and McLachlan,
2002; Braga-Neto and Dougherty, 2004; Davison and Hinkley, 1997; Efron and Gong,
1983; Efron and Tibshirani, 1993, 1997; Simon et al., 2003).

6.2 Reinventions of the wheel and comparisons among methods

There are two related problems that slow the development of the field just simply by
overwhelming researchers with new publications and algorithms. On the one hand, there
is a fair amount of “repeated reinventions of the wheel”, or ignorance of previously dealt
with problems (many of them, with solutions by now). In addition, many new methods
that are published are not evaluated against “standard” competing methods (see also
section 4), or are evaluated using only data sets regarded as “easy” (e.g., the Leukaemia
data set of Golub et al., 1999), making it hard to asses how new methods really perform (in
sharp contrast, for example, Dettling and Bühlmann, 2004, use six different data sets and
three competing predictors). Hopefully, more strict standards for evaluation of proposed
methods (together with the requirements of a freely available “reference implementation”
—section 7) will decrease the amount of new proposed methods, will shorten the “to-read”
pile, and will allow researchers to carry out wider and more exhaustive searches for more
mature solutions to similar problems from other fields.

6.3 Stability of results or which set of candidate genes is bio-
logically relevant?

Suppose a predictor has been built that includes 20 genes. How far can we take biological
interpretation on the relevance of these genes? A paper by Somorjai et al. (2003) suggests
that often not very far; the problem is the instability or non-uniqueness of results, a
phenomenon called the “Rashomon effect” by L. Breiman (Breiman, 2001b). It is very
common that, if we re-run a given procedure with only minor changes or using bootstrap
samples, we end up with very different sets of models, suggesting that there are many
different “optimal” subsets of genes (because there are many different descriptions that
give approximately the same minimum error rate Breiman, 2001b). Somorjai et al. (2003)
show how this can arise because of small sample sizes and an extremely small sample per
feature ratio (i.e., very small number of arrays relative to the number of genes). Somorjai
et al. (2003) suggest using a variety of classifiers or predictors and finding whether the
same features are selected; if the same set of genes is repeatedly selected, we would be more
confident that the set is reasonably robust. Of course, this way of examining robustness
to selection methods cannot be used if feature selection is carried out using the same filter
method for different classifiers (e.g., finding the 200 genes with largest F -ratio, and then
using those 200 genes with DLDA, KNN, and SVM). Additionally, the bootstrap can be
used to examine variation in solutions achieved. The multiplicity problem deserves much
more careful attention and prompts for cautious interpretation of results.

6.4 Recognising observational studies and the need of including
covariates

Although microarray studies are often referred to as “experiments” they are frequently
observational studies. The differences between observational and experimental studies
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are well known in statistics and epidemiology, and affect both analyses and interpretation
of results. Observational studies present several potential problems, specially:

• Background differences between groups and presence of potential confounding vari-
ables; confounding is a pervasive problem. Potter (2003) illustrates it with examples
of the relation between vegetable consumption and cancer being confounded by dif-
ferences in smoking associated with vegetable consumption (smokers also tend to
eat fewer vegetables) and differences in expression profiles between cancer types
being related to the unmeasured confounding of age and sex. A related problem
is interaction, such as when the degree of association between an exposure factor
(e.g., expression of gene A) and the disease is different for different levels of the
confounding variable, such as sex (Collett, 2003); there is evidence that this might
be the case in lung cancer (Patel et al., 2004). The problems of confounding and
interaction are discussed in more detail below.

• Biases arising from handling of units (e.g., case samples are frozen several hours after
collection whereas control samples are frozen immediately; Potter, 2003)) or from
biases during the selection of subjects for the study or from informative patterns of
missingness.

• Samples too small to allow for generalisations to the populations of interest, and
problems of reproducibility.

These issues are well known in epidemiology, which studies patterns of disease and
possible factors that affect these patterns of disease by using mainly observational data
(Collett, 2003; Potter, 2003). However, as indicated by Potter (2003) concerns related
to microarrays being often observational studies are mostly absent from standard papers
and textbooks on microarray design and analysis (Churchill, 2002; Drăghici, 2002; Simon
and Dobbin, 2003; Simon et al., 2003; Speed, 2003; Tumor Analysis Best Practices Work-
ing Group, 2004; Yang and Speed, 2002). In particular, it is surprising that confounding
and interaction have not been given more consideration (see also Ntzani and Ioannidis,
2003, who show that an alarmingly large number of predictive studies with DNA ar-
rays do not include adjustments for other known, and potentially competing, predictors).
Confounding and interaction can be addressed, at least partially, by appropriately using
relevant covariates in the statistical models15.

How is this relevant for microarray data? As Potter (2003) illustrates, many of the
differences seen in expression profiles between different types of cancers can be the re-
sult of confounding by age and sex. Another example is provided by Patel et al. (2004),
who have reviewed evidence that clearly indicates that there are sex-specific differences in
susceptibility to, and biology and progression of, lung cancer. Some of these sex-specific
differences could be related to differential expression of certain genes, decreased DNA re-
pair capacity in women, increased incidence of certain mutations, and estrogen signalling.
All of these factors and differences make it extremely likely that both confounding and
interaction will occur related to sex in studies of the relationship between gene expression
and cancer16, and in the development of predictive models. However, the good news is that
sex and age of patients are often known for each microarray sample; these two variables,

15Harrell (2001, pp. 3 and 390) emphasises the importance of multivariable modelling in observational
studies because they allow us to control (hold constant mathematically the effect of) variables that might
differ between groups because the study is observational

16Interactions are very likely given the complex mappings between transcript levels and protein levels
(O’Neill et al., 2003)
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thus, should routinely be included in the analysis as covariates and to examine possible
interactions. (Interestingly, Patel et al., 2004, call for undertaking sex-specific research in
lung cancer). Of course, comments regarding sex and age are extensive to other potential
confounders (e.g., diet, exercise, region of origin, etc), for which information might be
available. Controlling for the effect of confounders with strong effects (and, from the biol-
ogy we know, sex and age are likely to be confounders with strong effects in many cases),
can lead to increases in statistical power, because a source of variation is being taken into
account rather than being thrown into the error term17. Thus, by controlling the effects of
covariates we can be more likely to detect differential expression between conditions. On
the other hand, if differences between groups are mainly due to confounders (e.g., because
of a disproportionate presence of one sex in one of the groups), only after controlling for
the confounder can we trust that differential expression of certain genes or the predictive
ability of our model is not due to confounding. With respect to interactions (e.g., that the
effects of changes in the expression of certain genes depend strongly on, say, sex), their
presence can be an important finding in itself, as is the case of sex-differences and lung
cancer biology (Patel et al., 2004). Finally, if there are interactions with, say, sex, we will
obtain lower error rates if we develop different predictive models for men and women than
if we use a model that makes predictions independently of sex.

6.5 Collaboration between statisticians and biologists and the
use of software “magic bullets”

Successful use of microarrays to answer biologically relevant questions will require close
collaboration between biologists and statisticians during the complete process of the study.
The need for statisticians’ advice during the experimental design has been discussed be-
fore (Churchill, 2002; Simon and Dobbin, 2003; Yang and Speed, 2002) and is not the
subject of this chapter; however, it should be remembered that full details of the experi-
mental set up are necessary for the use of appropriate statistical methods. In the context
of this chapter, statisticians need to realize that there are often many subtleties in the
interpretation of microarray results that preclude simple mappings from RNA expression
data to phenotypes (O’Neill et al., 2003). At the same time, statistical help is needed to
insure that the statistical model and test being used is addressing the biological questions
of interest. What in any case is unrealistic is to expect that if the biologist sends a file
with 15000 rows by 200 columns (genes by subject) to the statistician, the statistician
will return to the biologist the list of, say, 30 genes that are the answer to the biological
question. But that is, in fact, what some users often expect from software tools or sta-
tistical consulting, and what some statisticians might believe is possible/desirable. And
this also means that the questions asked are sometimes reformulated to accommodate the
available software.

The problem of those expectations and procedures is that they lack key ingredients
often needed to provide an answer to the underlying biological question. Table 4 lists some
typical questions that a statistician might ask18. Only after these (and other) questions
have been answered, it is time to search for the appropriate tool, which might be a
web tool, a GUI-based stats program, or might require the competent use of command-
driven programs or the development of new programs to carry out the customised required
analyses.

17This is the idea behind blocking in experimental design: controlling a know source of variation.
18van Belle (2002) provides a very accessible account for the reasons behind those, and many other,

questions statisticians ask.
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7 Final note: source code should be available

Many new methods papers are published every month, and biologists and applied statis-
ticians do not have the time to implement each and every idea that is published, nor to
deal with the complications associated with patented algorithms. Sometimes, however,
when researchers ask for software from authors of methods paper they face answers such
as “. . .my method is straightforward to implement from the explanations in my paper”,
“. . . the method will soon be available as part of program XYZ (which is proprietary)”, or
“ . . . I am not in the business of providing software to anyone”.

In the opening lecture of the Royal Statistical Society meeting of 2002, titled “Sta-
tistical methods need software”, Brian Ripley (Ripley, 2002) proposed “(. . . ) a reference
implementation, some code which is warranted to give the authors intended answers in a
moderately-sized problem. It need not be efficient, but it should be available to anyone
and everyone.” Calls for availability of software, including source code, in bioinformatics
research have also been made in other settings (e.g. Dudoit et al., 2003; Marshall, 2003),
and the Open Bioinformatics Foundation (http://www.open-bio.org/) is “focused on
supporting open source programming in bioinformatics.” The Free Software Foundation
(http://www.fsf.org) and the Open Source Initiative (http://www.opensource.org/)
explain free and open source software. The reasons for making source code available in
bioinformatics and microarray research are summarised by Dudoit et al. (2003, p. 46) and
are reproduced in Table 5.

In this review, and following the above spirit, we have been highly biased towards
methods for which software, including source code, is available; besides the philosophical
issues involved, this is also a pragmatic decision.
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Goeman et al., 2004 Mootha et al., 2003

Testing If the set of genes that belongs to
set S shows differential expression
between classes A and B.

If the “most differentially ex-
pressed” genes are mainly of one
of the sets.

Statistic Multivariate: all genes in the set
fitted simultaneously using a gen-
eralised linear model1.

Univariate (gene-by-gene).

Ease of applica-
tion

Requires development of math for
different cases (already done for
two-class, multiclass, and cen-
sored data).

Only needs ordering of genes with
criteria of our choice.

Assumes equal
behaviour of
genes in set

No. Genes in the set(s) of interest
must have a similar ranking of the
statistic2.

Application to
different sets

Need to carry out different tests
for each of different sets of genes.

Can be applied at once over differ-
ent sets, and a permutation test
carried out to test the single null
hypothesis that no gene set is as-
sociated with the class distinc-
tion.

1In general, for multivariate hypotheses (“are the genes of set S differentially expressed between groups
A and B?”) we should prefer procedures that are fully multivariate (Krzanowski, 1988, pp. 235 and ff.).
2Requiring the set of genes to have a similar ranking of the statistic does not by itself guarantee that the
set of genes will be made of genes that are co-expressed.

Table 1: Comparison of methods in Goeman et al., 2004 and Mootha et al., 2003 for
testing hypotheses about pre-specified sets of genes.
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Method References
Classification
Diagonal Linear Discrimi-
nant Analysis (DLDA)

Dudoit et al. (2002 a), Simon et al. (2003), Romualdi et
al. (2003), Huang & Pan (2003), Duda et al. (2001) and
Hastie et al. (2001)1

K-Nearest Neighbour Dudoit et al. (2002 a), Simon et al. (2003), Romualdi et
al. (2003), Duda et al. (2001) and Hastie et al. (2001)

Support Vector Machines
(SVM)

Guyon et al. (2002), Lee & Lee (2003), Simon et al.
(2003), Romualdi et al. (2003), Duda et al. (2001) and
Hastie et al. (2001)

Partial Least Squares Stone & Brooks (1990), Garthwaite (1994), Ghosh
(2003), Gusnanto et al. (2003), Huang & Pan (2003),
Nguyen & Rocke (2002)

Random forests Breiman (2001), Liaw & Wiener (2002), Bureau et
al. (2003), Gunther et al. (2003)

Survival data
Partial Least Squares Park et al. (2002)

Penalised Cox regression Pawitan et al. (2004)
1Dudoit et al. (2002 a), Simon et al. (2003), Romualdi et al. (2003) are general reviews that include
reviews and results from different data sets. Huang & Pan (2003) show the relationships between several
of these (and other) methods. Duda et al. (2001) and Hastie et al. (2001) are general overviews, with
additional background material in statistics and machine learning.

Table 2: Well known and good-performing class prediction methods. Because classification
has been much more studied than prediction of survival, the methods listed for survival
data are not as well known.
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Predicted
True Diseased Healthy
Diseased True Positive (TP) False Negative (FN)
Healthy False Positive (FP) True Negative (TN)

Table 3: Confusion matrix for a two-class classification problem, with indication of the
usual labels for the four types of outcome.
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Are genes grouped in families, and are we interested in the overall responses of groups of
genes, or should we look at individual genes?

Are certain genes or spots in the array more relevant biologically, maybe because they are
easier to measure reliably with other assays?

Is there additional information on which genes are likely to be differentially expressed?

Do you really need the best possible predictor that statistical computing will get you, or
do you want a small list of genes very likely to be differentially expressed?

In what stage of the scientific discovery process is this study, and how tight control do
you require over the Type I error rate?

What other information and variables about the patients, besides the microarray data,
do you have available?

What population do you expect the results of these studies to be relevant for?

Are these the original, complete data, and are these the original biological questions, or
have the data and questions gone through an already long run of analyses which has
already filtered data and reoriented hypotheses?

What is the next stage of this study, or what do you want to do with these results?

What additional studies could be done to confirm the results from these analyses?

Table 4: Some relevant questions statisticians and biologists should engage in a dialog
about.
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• full access to the algorithms and their implementation, which allows users to under-
stand what they are doing when they run a particular analysis

• the ability to fix bugs and extend and improve the supplied software

• encouraging good scientific computing and statistical practice by providing appro-
priate tools, instruction, and documentation

• providing a workbench of tools that allow researchers to explore and expand the
methods used to analyse biological data

• ensuring that the international scientific community is the owner of the software
tools needed to carry out research

• promoting reproducible research by providing open and accessible tools with which
to carry out that research (reproducible research as distinct from independent veri-
fication)

Table 5: Reasons why source code should be available in bioinformatics, from p. 46 of
Dudoit et al. (2003).
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Figure 1: Two ROC curves from real microarray data; on top of each we indicate the
Area Under the ROC Curve.
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