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viAbstratAvoiding predators may on�it with territorial defense beause a hiding territorial residentis unable to monitor its territory or defend it from onspei� intrusions. With persistentintruders, the presene of an intruder in the near past an indiate an inreased probabilityof future intrusions. Therefore, following a onspei� intrusion, territorial residents shouldminimize osts from future intrusions at the ost of higher predation risks. The main fous ofthis thesis is to investigate hanges in antipredator behavior following a onspei� intrusion.In the �rst hapter I examine the existene of e�ets of past onspei� intrusions on an-tipredator behavior and how these e�ets di�er from the hanges in antipredator behaviorrelated to the immediate (vs. past) presene of a onspei� intruder. I onduted experimentswith males of the territorial lizard, Tropidurus hispidus, reording approah distane (distanebetween predator and prey when prey esapes) and time to re-emerge from a refuge afterhiding. Past aggressive interations a�eted antipredator behavior: lizards re-emerged sooner(ompared to a ontrol) when the predator attaked 5 min after an aggressive enounter. If thepredator attaked while an aggressive enounter was ongoing, there was also a redution in ap-proah distane. The results: (1) are onsistent with an eonomi hypothesis that predits thatT. hispidus inur greater predation risks to minimize future territorial intrusions; (2) show thate�ets of past and ongoing aggressive interations are di�erent, onsistent with minimizationof present intrusion osts.In the seond hapter I investigate whether testosterone manipulations a�et antipredatorbehavior and the e�ets of past aggressive interations. Elevated testosterone levels in lizardsresult in males that inrease their alloation to territorial defense at the expense of other osts.Consequently, we expeted that elevated testosterone would: (1) inrease exposure to preda-tion; (2) produe a disproportionate inrease in exposure to predation following a past aggressiveinteration. We manipulated testosterone levels of male T. hispidus using subutaneous testos-terone implants. Our results provide strong evidene that past aggressive interations result



viiin inreased exposure to predation and that the type of �rst enounter (aggressive interationwith a onspei� vs. ontrol presentation) had long-lasting e�ets on antipredator behavior.We found no evidene of di�erenes in aggressive behavior related to hormonal treatment, ofan assoiation between aggressive and antipredator behaviors, or of an inrease in exposure topredation with inreased testosterone level. The lak of e�ets of testosterone on antipredatorbehavior ould be the onsequene of testosterone manipulations not altering aggressive behav-ior on males of this speies, a pattern that might not be unommon in tropial vertebrates.In the third hapter I use a mathematial model to examine the e�ets that past onspei�intrusions an have on antipredator behavior, when intruders are persistent, fousing mainlyon the e�ets of rate of intrusion of other onspei�s, the behavior of the reintruder, andthe timing of the predator's attak. Past aggressive intrusions rarely a�et time to hide: theoptimal behavior is to hide as soon as the predator initiates its attak. Time to reemerge isstrongly a�eted by past aggressive interations (animals reemerge sooner from a refuge), andthese e�ets depend on the time of the predator's attak, the reintruder's pattern of return,and the intrusion rates of other onspei�s. Di�erenes between my �ndings and those fromprevious studies suggest that the trade-o� between antipredator behavior and territorial defensean involve di�erent types of osts than the trade-o� antipredator behavior-foraging.Together, these hapters are relevant for studies of the hanges in antipredator behavior dueto hanges in the soial environment, and they establish a onnetion between population levelproesses, mating system and defensibility of resoures, and antipredator behavior. These threehapters an have empirial and theoretial relevane for studies of the osts, (o)evolution, andeologial onsequenes of territorial and antipredator strategies.In the �rst two hapters I use ross-over designs extensively. These types of designs arefrequently used in animal behavior studies as they allow experiments with relatively smallnumbers of subjets that nonetheless ahieve high statistial power by using eah subjet asits own ontrol. However, ross-over trials are often analyzed inorretly in the behavioral



viiiliterature, and many statistis textbooks used by behaviorist either do not mention them orontain potentially misleading advie. Moreover, some of my experiments involve data, suh asmultivariate responses and ensored observations, whih although ommon in many behavioralexperiments are not generally onsidered in detail in statistial textbooks on ross-over trials.The last two hapters address these issues.In hapter four I review the use of ross-over trials in the behavioral literature, and I explainwhy the traditional analyses (based on paired t-tests) are inappropriate, the problems assoiatedwith arry-over e�ets, and the types of ross-over designs that are potentially most useful forbehaviorists. In the �fth hapter I review methods of analyses of ross-over trials in the ontextof animal behavior experiments. I group methods of analysis aording to the type of responsevariable: non-parametri and robust methods for metri responses, parametri methods formetri responses �linear mixed-e�ets models�, models for ategorial responses both non-parametri and parametri �extensions of generalized linear models�, ensored observations�survival analysis�, and multivariate responses. Within-individual ontrasts are explained indetail as they are the basis of many di�erent methods, from non-parametri to multivariateand survival-based models, and they o�er a useful framework for extending the analysis of datafrom ross-over trials to situation where robust methods might be needed (e.g., permutationtests of ensored multivariate responses). In this hapter I also disuss some types of plot thatare spei� and partiularly useful for ross-over trials. If design, wash-out periods, and type ofresponse are given the appropriate onsideration, ross-over designs an be very powerful toolsfor behaviorists whenever obtaining new subjets is more ostly than repeatedly testing thesame individual, and thus in partiular for researhers working in the lab or in �eld enlosureswhere animals require lengthy training or habituation.
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1Chapter 1
Antipredator behaviour hangesfollowing an aggressive enounter inthe lizard Tropidurus hispidus

This hapter has been published in theProeedings of the Royal Soiety of London, Series B, 1999, 266, 2457-24641.1 AbstratAvoiding predators may on�it with territorial defene beause a hiding territorial resident isunable to monitor its territory or defend it from onspei� intrusions. With persistent intrud-ers, the presene of an intruder in the near past an indiate an inreased probability of futureintrusions. Therefore, following a onspei� intrusion, territorial residents should minimiseosts from future intrusions at the ost of higher predation risks. I onduted experimentswith males of the territorial lizard, Tropidurus hispidus, reording approah distane (distanebetween predator and prey when prey esapes) and time to re-emerge from a refuge after hid-ing. Past aggressive interations a�eted antipredator behaviour: lizards re-emerged sooner(ompared to a ontrol) when the predator attaked 5 min after an aggressive enounter. Ifthe predator attaked while an aggressive enounter was ongoing, there was also a redutionin approah distane. The results: a) are onsistent with an eonomi hypothesis that pre-



2dits that T. hispidus inur greater predation risks to minimise future territorial intrusions;b) show that e�ets of past and ongoing aggressive interations are di�erent, onsistent withminimisation of present intrusion osts. These results are relevant for studies of the hanges inaggressive behaviour due to hanges in the soial environment, and for studies of the osts and(o)evolution of aggressive and antipredator strategies.1.2 IntrodutionOptimal antipredator behaviour should be the result of weighting the risk of predation againstthe bene�ts from other ativities. Experimental and theoretial work, foused mainly on thetrade-o� between foraging and predator avoidane, has shown that hanges in the terms of thetrade-o� between mortality risk from predation and osts of hiding/esaping from predatorswill hange the behavioural optimum (see Clark 1994; Ydenberg & Dill 1986; reviews in Lima& Dill 1990; Lima 1998). Thus, when the osts of interrupting other ativities inrease (e.g.,foraging at a better path or onsuming a larger prey), animals adopt behavioural strategies thatlead to inreases in risk of mortality from predation (e.g., delaying esape from a predator orreemerging sooner from a refuge). In territorial animals, territorial defene an be an importantdeterminant of reprodutive suess. However, ompared to the antipredator-foraging trade-o�, there is little information about trade-o�s between antipredator behaviour and territorialdefene. The general aim of this study was to examine how predation-related risk takingbehaviour hanges as a onsequene of past and present aggressive interations that inreaseterritorial osts of hiding; the two hypotheses tested predit inreased exposure to predationas a onsequene of inreased osts of hiding due to past (�rst hypothesis) or present (seondhypothesis) territorial onspei� intrusions.A predatory attak reates on�iting demands on a territorial animal: hiding dereases riskof mortality from predation, but minimises the hanes of deteting and repelling a onspei�intruder (i.e., inreases the territorial osts of hiding). These territorial osts of hiding an



3be speially high following a onspei� intrusion: in some territorial speies intruders obtainor enlarge territories by persistently intruding into the territories of settled animals (reviewin Stamps & Krishnan 1995, 1998; e.g., lizard Anolis aeneus: Stamps & Krishnan 1995; red-winged blakbirds: Yasukawa 1979; purple martins: Stuthbury 1991; song sparrows: Arese1987). Thus, the ourrene of one aggressive enounter an inform a territorial resident thatsubsequent territorial intrusions are likely.The �rst hypothesis tested in this study states that a past territorial intrusion hanges theterms of the trade-o� between predation and vigilane by inreasing the territorial osts ofhiding, and thus alters the behavioural optimum. Therefore, if a predator attaks soon after anaggressive interation is over, a territorial resident should modify its behaviour to derease thehanes of territorial intrusions at the ost of inreased predation risks (hereafter alled extendede�ets of aggression on antipredator behaviour). The preditions from this hypothesis are that,following an aggressive enounter, a territorial resident will show a derease in the distane atwhih it �ees from a predator and/or a derease in the time till it re-emerges from a refugeafter the predator attaks. These preditions were tested in Experiment 1 using a human asa simulated predator and omparing antipredator behaviour in males of the lizard Tropidurushispidus 5 min after the end of an aggressive interation to antipredator behaviour 5 min aftera ontrol presentation.The antipredator behaviour onsequenes of a hange in the territorial osts of hiding anbe further studied by examining the di�erene between the e�ets of an aggressive enounterthat has �nished (extended e�ets) and an ongoing aggressive interation (immediate e�ets).In an ongoing aggressive enounter the intruder is in the territory when the predator attaks,and hiding ould result in muh larger intrusion osts, speially if the approahing predator isnot an attaking one. The seond hypothesis tested in this paper states that urrent presene ofan intruder inreases territorial osts of hiding with respet to past presene of an intruder, andthus territorial residents should show further inreases in their exposure to predation when the



4predator approahes during an ongoing aggressive enounter vs. sometime after the end of theaggressive interation. This hypothesis predits that immediate e�ets will result in a dereasein the distane at whih the territorial resident �ees from a predator and/or a derease in thetime till it re-emerges from a refuge after the predator attaks ompared to extended e�ets.I examined this hypothesis in Experiment 2 by omparing antipredator behaviour of male T.hispidus during an ongoing aggressive enounter to antipredator behaviour 5 min after the endof the aggressive interation.1.3 Methods1.3.1 Animals and study siteExperiments (Table 1.1, p. 8) were onduted at the Nisia Floresta Forest Experimental Sta-tion, EFLEX-IBAMA, (6◦ 5' S, 35◦ 12' W), loated 45 Km from Natal (Northeastern Brazil);Experiment 1 (hereafter Exp. 1) was onduted between 27-April and 22-May, 1997, and Ex-periment 2 (hereafter Exp. 2) between 29-November-1997 and 13-January-1998. I used adultmales of the lizard Tropidurus hispidus (snout-vent length [SVL℄ 70-130 mm), a widespread,diurnal, sit-and-wait iguanine lizard in South Ameria (Rodrigues 1987; Vitt 1995). In the areastudied both male and females were territorial through the year, and enounters among malesthat developed into esalated �ghts tended to repeat themselves (with the same ontenders) insubsequent hours/days (pers. obs.).Experimental subjets were adult males (SVL≥ 100 mm), aptured in villages lose to thestation, that had not been used in other experiments, or used before as intruders, or laterused as intruders in the same enlosure. Intruders (adult males SVL > 90 mm) were used amaximum of three times and were never wounded by the experimental proedure. The sameexperimental animal was not exposed to the same intruder more than one. Intruders wereassigned at random to experimental animals, but no intruder ould be used twie in the same



5enlosure and for the same treatment (in Exp. 2). Moreover, for eah experimental animal inExp. 2, none of the two treatments ould be applied using either the two largest or the twosmallest intruders, to ensure adequate interspersion with respet to intruders' sizes (this is notappliable to Exp. 1 where eah experimental animal was subjet to only one intruder). Allanimals were released in the area of apture at the end of testing.1.3.2 Enlosures and animal husbandryI used enlosures to minimise variation in behaviour. Enlosures were loated in open pathesin plantation areas and measured 3.6 to 4.9 m2 (2 to 2.5 by 2 m) in Exp. 1 and 4 m2 (2 by 2m) in Exp. 2. Enlosures were 1 m high, onstruted from transparent plasti, sunk 15 m intothe ground, attahed to a wood frame. Eah enlosure ontained two refuges made with briksand roof tiles that o�ered protetion and were readily used by the lizards as hiding plaes.Enlosures were partially overed from above to provide shade during the entral hours of theday. Enlosures also inluded one or two females (and in some ases one small male; see Table1.1 (p. 8)). All females were randomly assigned to enlosures/males, exept that females' SVLhad to be at least 5 mm less than the males' (in the �eld, males were assoiated with smallerfemales).I plaed a blind 7.5 m away from the enlosure. Using suspended �shing lines, I ould movean intruder from behind the blind to inside the enlosure and retrieve it at the end of the trial,without my ever leaving the blind. When I approahed the enlosures for feeding or smallrepairs I used a ponho whih ontrasted with the lothes used during tests (white pants andT-shirt).Enlosures were more than 15 meters apart with dense and tall intervening vegetationensuring no visual ontat between them, and were plaed in areas where, during a period often months, I only observed four free-ranging adult T. hispidus (one male, three females). Thus,interations with naturally-ourring onspei�s should have been extremely rare.



6Lizards were fed every two to three days a diet of rikets, mealworms, �y maggots, roahesand beetles, and a mixture of egg, powdered milk, and fruit. In Exp. 1 water was availablenaturally (rainy season) and animals were fed one or two days before testing started, andwere not fed during the days of testing. In Exp. 2 (dry season), enlosures had several waterontainers, and animals were fed one or two days preeding testing, and early on the third dayor, after testing, on the seond day. Enlosures were leaned of faeal boli before introduingnew experimental animals.Animals in the enlosures displayed normal antipredator behaviour: T. hispidus uses refugesfor hiding when a predator attaks (Vitt 1995) and in the study area I observed wild T. hispidusrun into refuges when attaked by the predators dogs, ats, hikens, and ommon marmosets(Callithrix jahus), and when potential predators (e.g., rane hawk, Geranospiza aerulesens,araara, Polyborus planus) �ew over. Moreover, in this region of Brazil, T. hispidus are veryfrequently killed by humans (partiularly hildren). T. hispidus in the enlosures not onlysought refuge when approahed by a human, but also when rane hawks and araaras �ewover.Animals in the enlosures also displayed normal aggressive and mating behaviour: malesattaked intruders, and ourted and mated with females; more than nine females laid eggs andat least six luthes hathed suessfully in the enlosures. Body mass did not hange betweenthe time the animals were introdued and the time they were removed from the enlosures (Exp.1: mean hange [�nal-initial mass℄ ± s.e.= −0.27 ± 0.409 g, paired t14 = 0.67, p = 0.512; Exp.2: mean hange ± s.e.= 1.33 ± 0.736 g, paired t11 = 1.89, p = 0.085). While in the enlosures,lizards were rarely approahed by humans (exept myself).1.3.3 Experimental design and antipredator testsIn both experiments, animals were tested several days (Table 1.1, p. 8) after being introduedin an enlosure to ensure that animals were used to the enlosures. I used ross-over designs



7(Jones & Kenward 1989): eah animal was subjet to two treatments through time, so thattreatment di�erenes are estimated using within-animal omparisons. Eah animal reeivedonly one treatment per day, in the sequenes shown in Table 1.1 (p. 8), and was tested insuessive days and at about the same hour as the preeding day. Thus, the testing phaselasted two days for eah animal in Exp. 1, and four days for eah animal in Exp. 2. Bothexperiments involved presenting a male lizard with a stimulus (intruder or ontrol) and, sometime later, measuring antipredator behaviour by simulating a predatory attak. A test (stimuluspresentation + antipredator test) lasted approximately 40 min per animal.In Exp. 1 I measured antipredator behaviour 5 min after an intruder enounter (E: extendede�ets) and 5 min after a ontrol (C) presentation. In Exp. 2 I measured antipredator behaviourduring an ongoing aggressive interation with an intruder (I: immediate e�ets) and 5 min afterthe end of the interation (E: extended e�ets). Details of the experiments are shown in Table1.1 (p. 8). When esaping predators T. hispidus need to deide when to �ee from the predatorand, after hiding, when to re-emerge from the refuge; thus, the variables measured were hosento re�et these two deissions and are explained in Table 1.2 (p. 9). To run the antipredatortest, I positioned myself 13 m away from the enlosure (4.5 m behind the blind) and approahedthe lizard diretly at a moderate speed (Exp. 1: mean = 0.42 m/s, s.d. = 0.056; Exp. 2: mean= 0.46 m/s, s.d. = 0.047). Whenever the lizard moved, I stopped for 15 se and reorded myposition, and then approahed again. The approah-and-stop ontinued until the lizard hid,when I moved to a spot at a �xed distane from the enlosure (Exp. 1, 2 m; Exp. 2, 4.5 m), andremained motionless for 20 min. I reorded my movements and the lizard's behaviours usingan HP-48GX alulator for ontinuous event reording. All tests were onduted when lizardswere ative and air temperature (shaded bulb at 1.5 m) was higher than 26 ◦C.Animals were habituated to the movement of the intruder delivery system using a toothpasteontainer (to prevent habituation to the ontrol) with whih I mimiked the movements I woulduse during the intruder and ontrol presentations. Lizards were subjet to 4 to 10 habituation



8Table 1.1: Experiments 1 and 2: methods.Exp. Treatments Sequenes 1 Subjets1 Extended (E):- Introdued intruder male.- Left in enlosure max. 15 min.- One attaked, left for 3 min and untilthree attaks.- Remove intruder.- Antipredator test; time end of in-truder presentation to antipredatortest: 5 min.Control (C):- Introdued wood stik (≃olour andsize of adult male).- Left in enlosure for 3 min 45 se2.- Remove ontrol.- Antipredator test; time end of on-trol presentation to antipredator test:5 min.

EC,CE - Three bathes of six enlosures eah.One experimental male per enlosure.- Eah enlosure also two females (fourenlosures) or one female and one smallmale (two enlosures)3. Females andsmall males the same in eah enlosurethroughout the experiment.- Experimental males assigned ran-domly to enlosures.- Three males in eah bath assignedrandomly to eah sequene.- Males tested after 6 to 7 days in en-losures.- Sample size: 15 males4.2 Extended (E):- Introdued intruder male.- Left in enlosure max. 15 min.- One attaked, left for 2 min (and aminimum of four attaks) or until sixattaks, whihever ame �rst.- Remove intruder.- Antipredator test; time end of in-truder presentation to antipredatortest: 5 min.Immediate (I):- Introdued intruder male.- Left in enlosure max. 15 min.- One attaked, left for 2 min (and aminimum of four attaks) or until sixattaks, whihever ame �rst.- Antipredator test; i.e., intruder stillwithin enlosure.- Intruder removed immediately afterlizard hid5.

EIIE,IEEI - Six di�erent enlosures used repeat-edly, no bathes .- One female and one experimen-tal male introdued simultaneously ineah enlosure (i.e., di�erent femalesfor eah male).- Males assigned randomly to enlo-sures.- First animal tested assigned sequeneat random; suessive animals assignedimmediately (before testing) alternat-ing sequenes.- Males tested when habituated (after5 to 12 days in enlosures).- Sample size: 12 males6.
1A sequene is the order in whih the within-individual treatments are applied. An animal is assigned to asequene, and treatments applied in the spei�ed order (e.g., for sequene EC in Experiment 1 �rst testing dayis E, seond testing day is C). Therefore, Experiment 1 onsisted of 2 periods and Experiment 2 of 4 periods,where a period is eah one of the testing days.
2Median time that an intruder spent in enlosure in preliminary trials.
3In the �eld, a male's territory overlaps the territory of one or more females and often the home range of one ormore small males. I never observed aggressive interations between the experimental male and the small male.
4One of the enlosures ould only be used during the �rst week and one animal was exluded from the studybeause it was hiding ontinuously during the day of testing.
5I obtained data for all four periods for all animals exept two, one from eah of the sequenes.
6In the I-treatment removing the intruder from the enlosure took 1 min and involved some movement of theintruder-delivery-system. To ontrol for these e�ets, in the E-treatment after the animal hid I approahed theenlosure and remained next to it for 1 min, while moving the intruder delivery system to mimi the e�ets ofremoving an intruder.



9Table 1.2: Response variables used to measure antipredator behaviour1.Variable DesriptionApproah Distane Distane between observer and the lizard when the lizard �rstinitiated �ight.Minimum Distane Minimum distane between the observer and the lizard before itinitiated �ight; the same as Approah Distane if there is onlyone run.Time to Reemerge Time sine the lizard hid until it re-emerged (at least all thehead was visible out of the refuge).Time to Full Exposure Time sine the lizard hid until it was fully exposed (all thelateral surfae of the body �not inluding tail� was visible outthe refuge). Lizards in full exposure were generally more than one bodylength away from the refuge, they were visible (from many sight points) toboth other lizards and potential predators, and were able to monitor theirwhole territory.
1 The preditions tested refer to inreases in predation risk that result from behavioural hanges of the prey. AsI ould not measure predation risk diretly I used the four response variables as proxies (and assumed that therisk of being killed is a dereasing funtion of eah of the response variables). Approah Distane and MinimumDistane are proxies for risk when predator attaks; Time to Reemerge and Time to Full Exposure are proxiesfor risk at re-emergene. Thus, the four variables belong to two groups: initial attak and reemergene; resultswithin eah pair of variables should be onsistent (i.e., either none of the two variables will depart from the nullhypothesis, or the two variables will depart from it in the same diretion).trials, and were onsidered habituated if they did not hide during two suessive habituationtrials. In Exp. 2 I initially habituated some animals by hanging soda bottles for 24 to 48 hnext to the enlosures (using the intruder delivery system); later, these animals were hekedfor habituation using the toothpaste ontainer.
1.3.4 Statistial analysesIn Exp. 1 I analysed Approah Distane and Minimum Distane (Table 1.2 (p. 9)) with linearmixed-e�ets models, using the parameterisation in Jones & Kenward (1989, p. 30), but also



10inluding several ovariates and random e�ets. The full model examined was:
yijklm = µ + λi + βXj + αk + cj|k,β + wl + sjl + πm + τn[i,m]

+(τβ)nXj + (τα)kn + (αβ)kXj + (ταβ)knXj + eijlm, (1.1)where in the �xed e�ets part µ is the interept, λ is the arry-over (whih in this parameter-isation is equivalent to a sequene e�et), β is the oe�ient for enlosure area (X), α is typeof enlosure (two females or one female and one small male), π is the period e�et (a periodis eah one of the oasions on whih a treatment is applied, for example �rst or seond day),
τ is the diret treatment e�et, and the terms in parentheses are interations. In the randome�ets part , w, and s are the random e�ets of enlosure, week, and individual respetively,and e are the within individual errors. All random e�ets are normal and independent of eahother. When analysing Approah Distane I inluded my approah speed and the interationapproah speed* treatment. For the univariate analyses of Exp. 2 (all four variables �Table 1.2,p. 9) I used the linear mixed model

yijkm = µ + ξi + cj + (ξc)ij + sijk + πm + τn[i,m] + λn[i,m−1] + eijkm (1.2)where all terms are as in the model for Exp. 1, exept for ξ whih denotes sequene (sequeneis the order in whih the within-individual treatments are applied). Model �tting proeeded asin Exp. 1, exept: a) I modelled the variane-ovariane matrix of the within-individual errorse (examining the �t of ompound-symmetri, autoregressive, general �unstrutured positivede�nite�, and heterosedasti error strutures), beause the data are repeated (>2) measures ofthe same individual; b) if period (as ategorial variable) was left in the model, I attempted tosimplify this struture by �tting linear and quadrati terms of period as a ontinuous variable.To �t these models I proeeded as explained in Pinheiro & Bates (2000), Diggle et al. (1994),and Littell et al. (1996).



11In Exp. 1, for Time to Reemerge and Time to Full Exposure, nine and �ve, respetively,out of 30 (i.e., about 1/6 and 1/3) of the observations were right-ensored (i.e., at 20 min thelizards still had not re-emerged or fully re-emerged), and thus require the use of tehniquesfor ensored data. I used the (�rst) approah suggested in Feingold & Gillespie (1996) afterlog-ranking (e.g., Lawless 1982, p. 420) the observations. To obtain p-values I used systematipermutation tests (Edgington 1995). In Exp. 2 Time to Reemerge and Time to Full Exposurehad only a few right ensored observations (two and seven, respetively, out of 46). Althoughresidual plots did not indiate any problem with the models, I also analysed these data withthe method of Feingold & Gillespie (1996), analogous to Exp. 1.
In both experiments I measured four response variables (Table 1.2, p. 9). To prevent in-ferential errors from four univariate tests of potentially orrelated response variables, and totest for overall di�erenes in antipredator behaviour taking into aount the ovariation amongresponse variables, I used the multivariate permutation test for ross-over designs of Johnson& Merante (1996). To give equal weights to all variables I saled them to a mean of zeroand variane of one before omputing within-subjet ontrasts. (Simulations [Díaz-Uriarte &Nordheim, in prep.℄ indiate that the Type I error rate of the multivariate test with log-rankedensored data is the nominal one). I obtained the p-value for this test using systemati datapermutation.
Permutation and multivariate tests were performed with ode written in SPlus v. 3.3 (Sta-tistial Sienes 1995). For Exp. 1, in all permutation tests animals were reassigned to sequenesonly within bath; for weeks two and three the permutation was onditional on the pattern ofmissing data. Mixed models were �tted using the SPlus library nlme (Pinheiro & Bates 2000)and SAS's PROC MIXED (Littell et al. 1996). All p-values are two-sided.



121.4 Results1.4.1 Experiment 1: extended e�ets of aggression on antipredator be-haviourThe multivariate test showed strong overall evidene of di�erenes between intruder and ontrolpresentation (p = 0.005). This overall di�erene is the result of di�erenes between ontrol andextended onditions in Time to Reemerge and Time to Full Exposure.There was evidene of period e�ets for Time to Full Exposure (p = 0.0408 in the seondday, lizards re-emerged fully sooner, suggesting habituation). More importantly, for both Time
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Figure 1.1: Experiment 1, (a) Time to Reemerge and (b) Time to Full Exposure. Survivalurves (based on the Kaplan-Meier estimator of the survival funtion). The y-axis an beinterpreted as (a) "Probability of not having re-emerged" and (b) "Probability of not havingfully re-emerged." The ross denotes ensoring. These �gures do not take into aount thatmeasures for the same individual are potentially orrelated and that there are two distintsequenes; they should not be used diretly for hypothesis testing. P-values for treatmente�ets (analysis following Feingold & Gillespie, 1996) are 0.0025 and 0.0058, respetively.



13to Reemerge and Time to Full Exposure, lizards re-emerged sooner if they had been in anaggressive enounter instead of given a ontrol treatment (Fig. 1.1, p. 12; p = 0.0025 and
0.0058 for Time to Reemerge and Time to Full Exposure, respetively). Thus, the results forTime to Reemerge and Time to Full Exposure are onsistent and in the diretion predited bythe �rst hypothesis. Analyses using mixed-e�ets models yielded the same qualitative results.None of the analyses for any of the variables showed evidene of arry-over e�ets (p > 0.4).There were no di�erenes between ontrol and extended treatment for (log of) MinimumDistane. For (square root of) Approah Distane I found a signi�ant interation betweentreatment and enlosure area (F1,13 = 12.86, p = 0.0033): Approah Distane inreased witharea in the ontrol treatment, but not in the extended treatment (from a reparameterisedmodel, regression oe�ients for ontrol and intruder are 1.03 and -0.385, respetively; s.e.=0.414; t18.6 = 2.48 and −0.93, p = 0.0227 and 0.3654). There was weak evidene (F1,12 = 4.51,
p = 0.0552) for a main e�et of type of enlosure: approah distane was larger in enlosureswith two females than in enlosures with one female and one small male (bak-transformed leastsquares means are 7.4 and 4.11 m respetively). Although the speed of my approah did notdi�er between treatments (mean di�erene intruder-ontrol (s.e. = 0.018 ± 0.021 m/s, paired
t13 = −0.8675, p = 0.401), I inluded my approah speed in the models for Approah Distane;neither the main e�et nor its interation with treatment were signi�ant (p > 0.3).1.4.2 Experiment 2: Di�erenes between extended and immediate e�ets.The multivariate test showed strong evidene of overall di�erenes between extended and imme-diate e�ets (p = 0.0130). This overall di�erene was due to di�erenes in Approah Distaneand Minimum Distane.Time to Reemerge and Time to Full Exposure did not di�er between extended and immedi-ate treatments. For (log of) Time to Full Exposure animals re-emerged sooner in later periodsof testing: the �nal model inluded only a linear e�et of period (F1,33.2 = 12.41, p = 0.0013;
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15e�et: F1,8.42 = 0.7, p = 0.6143). In summary, the results for both Minimum and ApproahDistane are onsistent and in the diretion predited by the seond hypothesis: lizards allowedthe potential predator to approah loser when they were engaged in an ongoing �ght with aonspei� intruder (Fig. 1.2, p. 14).A possible explanation of the di�erenes in Approah and Minimum distanes are dilutione�ets (see disussion). In Experiment 2 I also reorded whether the female was out of therefuge. If dilution e�ets are important, experimental lizards should show shorter Approah orMinimum distanes when the female was out of the refuge. I ompared the e�et of a femaleout on Approah and Minimum distanes for the extended treatment. I also reanalysed the�nal models for Approah Distane and Minimum Distane, allowing for the e�et of femalepresene/absene to di�er between treatments. In no ase was the presene of the femalesigni�ant (all p > 0.15).No experiment ompared immediate e�ets with a ontrol. However, if we assume that theanimals from Experiment 2 would have shown di�erenes between extended and ontrol in thesame diretion as animals from Experiment 1 did, we an summarise the results from bothexperiments together as shown in Fig. 1.3 (p. 16).1.5 DisussionPast aggressive interations (Experiment 1) dereased the amount of time male T. hispidusspent hiding after a simulated predatory attak; when the predator attaked during an ongoingaggressive enounter (Experiment 2), lizards also allowed the predator to approah loser (Fig.1.3, p. 16). These results show: a) the existene of extended e�ets of aggressive behaviouron antipredator behaviour; b) that extended e�ets di�er from immediate ones. The resultsare onsistent with the two eonomi (adaptive) hypotheses stated in the introdution: a)past presene of an intruder an indiate an inrease in the probability of future intrusions,
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Figure 1.3: Summary of results from both experiments, based on ApproahDistane and Time to Reemerge. I alulated "% of Control Value" as100* Adjusted mean for experimental onditionAdjusted mean for ontrol .and therefore if a predator attaks soon after an aggressive interation is over, a territorialresident should modify its behaviour to derease the hanes of territorial intrusions at the ostof inreased predation risks, and b) urrent presene of an intruder inreases territorial ostsof hiding with respet to past presene of an intruder, and thus territorial residents shouldshow further inreases in their exposure to predation when the predator approahes during anaggressive enounter.Extended e�ets of aggression on antipredator behaviour (Experiment 1) have not beenreported before, but the inrease in predation exposure when the lizards were involved in a�ght 5 min before the attak of the predator is onsistent with eonomi models of antipredatorbehaviour (Ydenberg & Dill 1986; Clark 1994). The results indiate that extended e�ets a�etmainly re-emergene time, not approah distanes. A predatory attak is generally a fast eventand the rate of inrease of the ability to monitor the territory by delaying �ight is probablysmall ompared to the rate of inrease of mortality risk. Thus, extended e�ets on approahdistanes are likely to be non-existent or di�ult to detet when present. In ontrast, hanges



17in re-emergene an result in inreased ability to monitor the territory without large inreasesin mortality risk.The immediate e�ets (Experiment 2) are onsistent with those observed by Jakobsson etal. (1995) in both the ihlid, Nannaara anomala, and the warbler, Phyllosopus trohilus,where animals engaged in an aggressive interation allow a predator to approah loser thananimals exposed to a ontrol stimulus (see also Brik, 1998). The data presented here also showthat immediate e�ets resulted in a derease in time to reemerge (with respet to a ontrol).However, the immediate e�ets did not result in further dereases in times to reemerge omparedto the extended e�ets, despite the potentially larger intrussion osts in the immediate ondition(see Introdution).In general we should expet di�erent omponents of the antipredator behaviour to be dif-ferentially a�eted by aggressive interations, as hiding quikly an have very di�erent on-sequenes in terms of mortality from predation and intruder detetion than re-emerging late.These results emphasise the need of measuring the omponents of the antipredator strategythat best haraterise the key behavioural deisions involved in predator avoidane (e.g., Lima& Dill 1990) and intruder detetion.The immediate e�ets on Approah and Minimum Distane (Experiment 2) ould be ex-plained by the non-adaptive �sensory limitation hypothesis:� an animal involved in a �ght mightbe unable to detet a predator as fast as an animal that is not involved in a �ght (e.g., Bernays& Wislo 1994; Milinski 1984). Sensory limitation seems to be the mehanism invoked by Brik(1998) and by Jakobsson et al. (1995) to explain the derease in approah distane during in-traspei� �ghts in both warblers and ihlids. In its most extreme form, the sensory limitationhypothesis predits that an animal will initiate esape as soon as the predator is deteted. Inontrast, the eonomi hypothesis emphasises the deision omponent (Ydenberg & Dill 1986):the derease in approah distane in the immediate treatment would be the result of a hangein the pereived ost of hiding and not of a derease in the ability to detet predators. It is not



18possible to di�erentiate between the two hypothesis with the approah distane data, as bothmake similar preditions regarding approah distane in the �rst approah of the predator. Itis di�ult to determine the exat moment when a predator is deteted, but the two hypothesesould be di�erentiated by inreasing the osts of hiding: the eonomi hypothesis would preditinreased exposure to predation, whereas the sensory limitation hypothesis would predit nohange in antipredator behaviour. Further work to eluidate whether the hanges in approahdistane in the immediate ondition are due to sensory limitations, to an eonomi deision, ora ombination of both, is warranted.A third explanation for the redution in approah distane in the immediate treatment aredilution e�ets: if the predator an only apture a single prey the hanes that the residentis the vitim derease in the immediate treatment beause there are two lizards in the area.The tests in Experiment 2 (presene vs. absene of female out of the refuge), although donot onlusively exlude dilution e�ets, suggest that the hanges in approah and minimumdistanes in the immediate treatment were not solely a result of dilution e�ets.In ontrast, the di�erenes in Time to Reemerge and Time to Full Exposure between theontrol and the extended onditions (Experiment 1) annot be explained by the sensory lim-itation hypothesis or by dilution e�ets. Thus, the eonomi hypothesis provides the bestexplanation for the hanges in time to reemerge.Past aggressive interations with intruders an a�et the subsequent behaviour of a ter-ritorial holder. Great tits invest more time in territorial vigilane (at the ost of dereasedforaging) after enountering intruders (Ydenberg & Krebs 1987; Kaelnik et al. 1981); inthe lizard Seloporus jarrovi the frequeny of most displays' peaks shortly after an enounter(Moore 1987; also Thompson & Moore 1992 for Urosaurus ornatus); in several taxa, followinga previous vitory, there is an inrease in the probability of winning subsequent enounters(Adamo & Hoy 1995; Chase et al. 1994). Funtionally, these di�erent phenomena an be aresponse by the territorial resident to a transient inrease in the probability of re-intrusion by



19the same intruder; and extended e�ets of aggression on antipredator behaviour are onsistentwith minimisation of the inreased risk of territorial intrusion aused by a transient hange inthe probability of future intrusions. Thus, a similar funtional explanation an underlie di�er-ent behavioural phenomena where animals hange their aggressive/antipredator behaviour as aresponse to loal hanges in their soial environments (e.g., Oliveira et al., 1998).Extended e�ets show a onnetion between antipredator and aggressive behaviour whihshould vary with the defensibility of resoures, and that an in�uene the (o)evolution of thesesets of traits, by inreasing both predation related osts of territorial behaviour and territorialosts of hiding. The hypothesis underlying extended e�ets is testable, using both within- andamong-speies omparisons. Given that an eonomi reasoning is the basis of the extendede�ets, it will also be partiularly important to understand the relative ontributions of perep-tual onstraints, dilution e�ets, and inreased hiding osts in the e�ets of an ongoing �ght onapproah distanes, and, ultimately, measure the �tness onsequenes of di�erent antipredatorresponses following an aggressive enounter.1.6 AknowledementsI thank C. Lázaro-Perea for initial disussion, subsequent frequent disussion and advie, en-ouragement, and help building, leaning, and taking the enlosures down, as well as logistiand other types of support; Departamento de Fisiologia, Universidade Federal do Rio Grande doNorte, Brazil, and in partiular M. F. Arruda for invaluable logisti support; E�ex-IBAMA ofNisia Floresta, speially J. Dantas, for failities, tools, and permission to perform this work; E.Nasimento and several hildren of Porto and Nisia Floresta for assistane with lizard apture;C. A. Marler and C. T. Snowdon for advie; D. Abbott, A. Bakshy, J. K. Bester-Meredith, S.de la Torre, K. F. Klomberg, C. Lázaro-Perea, C. A. Marler, C. W. Meredith, E. V. Nordheim,C. T. Snowdon, and B. C. Trainor, and two anonymous reviewers for omments on the ms; E.V. Nordheim for statistial disussion; A. C. de Moura and S. Pro�rio for the �rst mealworms;
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23Chapter 2
Antipredator behavior hangesfollowing an aggressive enounter:e�ets of testosterone manipulations
2.1 AbstratChanges in antipredator behavior following a onspei� territorial invasion suggest that malesof the lizard Tropidurus hispidus inur greater predation risks to minimize potential osts fromfuture onspei� intrusions. Elevated testosterone levels in several lizard speies result in malesthat inrease their alloation to territorial defense at the expense of other osts. Consequently,we expeted that elevated testosterone would: (1) inrease exposure to predation; (2) produea disproportionate inrease in exposure to predation following a past aggressive interation.We manipulated testosterone levels of male T. hispidus using subutaneous testosterone im-plants. Our results provide strong evidene that past aggressive interations result in inreasedexposure to predation and that the type of �rst enounter (aggressive interation with a on-spei� vs. ontrol presentation) had long-lasting e�ets on antipredator behavior. We foundno evidene of an assoiation between aggressive and antipredator behaviors, or of di�erenesin aggressive behavior related to testosterone treatment (but we found indiation of a dereasein aggression with inreasing ortiosterone plasma levels). There was evidene of hanges inantipredator behavior assoiated to hormonal treatments, but in a di�erent diretion from the



24one hypothesized. We disuss these results in the ontext of absene of hanges in aggressivebehavior related to testosterone, possibly related to housing onditions, and suggest that futurestudies might bene�t from fousing on the role of ortiosterone.2.2 IntrodutionReent empirial work (Díaz-Uriarte, 1999) has shown that past aggressive interations ana�et antipredator behavior: males of the lizard Tropidurus hispidus reemerge sooner froma refuge after hiding from a predator if the predator attaks 5 min after the resident malehas hased away a onspei� intruder male. Those results are onsistent with the eonomihypothesis that male T. hispidus inur greater predation risk to minimize the potential ost offuture territorial intrusions. Funtionally, this hypothesis rests on two assumptions: �rst, thatintruders are persistent, so that a past aggressive interation an inform a territorial residentthat subsequent intrusions are likely; seond, that suessful defense of a territory is relevant forreprodutive suess. The territorial osts of hiding inrease if intruders are persistent beausethe same amount of time in hiding an result in a muh larger derease in reprodutive suessif an intruder is likely to return.The proximate mehanisms underlying the hange in antipredator behavior following anaggressive enounter are unknown. There is evidene from sheep (Vandenheede & Bouissou,1996; Bouissou & Vandenheede, 1996) that inreased testosterone results in dereased fearful-ness (testosterone an also derease nest defense against predators by dereasing the likelihoodof males with high testosterone being present at a nest �Cawthorn et al., 1998�, but this isnot ontraditory with the previous evidene). Other hormones suh as thyroid hormone andgrowth hormone (e.g., Abrahams & Pratt, 2000; Abrahams & Sutterlin, 1999; Johnsson et al.,1999, 1996) have been shown to a�et antipredator responses by modifying the antipredator-foraging trade-o�. To our knowledge, there is no previous work on the e�ets of testosteroneon antipredator behavior operating by modifying, physiologially, the antipredator-territorial



25defense trade-o�. However, it has been well doumented that androgen hormones are involvedin territorial defense in lizards (e.g., Seloporus jarrovi : Moore, 1988; Moore & Marler, 1987;Marler & Moore, 1989, 1991; Anolis sagrei : Tokarz, 1987, 1995; Uta stansburiana: DeNardo& Sinervo, 1994; Psammodromus algirus: Salvador et al., 1997). Therefore, the evidene fromtemperate-zone lizards indiates that inreased testosterone levels result in males that inreasetheir alloation to territorial defense at the expense of other osts (suh as survivorship orforaging).If testosterone does inrease the alloation to territorial defense, we would antiipate thatinreases in testosterone will modify the trade-o� between antipredator behavior and territorialdefense so that, when faed with a predator, animals with inreased testosterone levels will inurgreater predation risks to minimize the risk of territorial loses. This e�et should manifest itselfas a derease in the distane between predator and prey when the prey initiates esape (ap-proah distane) and/or a derease in the time to reemerge from a refuge following a predatoryattak. In addition, the e�ets of testosterone on antipredator behavior ould be enhaned if thepredator attaks shortly after a territorial resident has evited a onspei� intruder beausethe territorial osts of hiding an be partiularly high. Thus, elevated testosterone levels arepredited to ause a disproportionate derease in approah distane and/or time to reemergewhen the predator attaks shortly after a onspei� intrusion. In other words, we should ex-pet an interation between testosterone level and the e�ets of a past territorial intrusion onantipredator behavior. These hypotheses an be examined using hormonal manipulations.Manipulation of hormone levels an also help investigate whether aggression and antipreda-tor behavior are physiologially linked, and an inrease the variation in aggressive and an-tipredator responses thus making ovariation patterns among these two sets of traits moredetetable (e.g., see Sinervo & Basolo, 1996 for disussion of phenotypi manipulations). Ge-neti orrelations among di�erent funtional ategories of behavior ould have dramati e�etson behavioral evolution, beause of orrelated responses to seletion (Stamps, 1991). The si-



26multaneous olletion of data on aggression and antipredator behavior allow one to examineif, at least phenotypially, these two sets of behaviors are orrelated. Despite the value of thisapproah, studies that fous on the orrelation of funtional ategories with major �tness e�etsare still rare (Sih, 1992; Stamps, 1991). Nevertheless, a phenotypi orrelation between aggres-sive and antipredator behavior has been found in a few ases (spiders: Reihert & Hedrik,1993; see also Huntingford, 1976; Tulley & Huntingford, 1988), and it has been suggested thathormones ould be the link between these two funtional ategories (Reihert & Hedrik, 1993;Stamps, 1991). But this hypothesis has not been tested.In this paper we examine the e�ets of testosterone manipulations on antipredator behaviorand on the hanges in antipredator behavior following a onspei� intrusion, in males of thelizard Tropidurus hispidus, for whih there is evidene that past aggressive interations resultin hanges in antipredator behavior (Díaz-Uriarte, 1999). We also present data on testosteroneplasma levels and the e�ets of testosterone manipulations on the aggressive behavior of atropial speies of lizard; most of the evidene for the e�ets of testosterone on aggressivebehavior of lizards omes from temperate-zone speies (see referenes above). In ontrast, bothmale and female Tropidurus hispidus are aggressive and territorial (pers. obs.), and are apableof reproduing throughout the year (pers. obs.; also VanSluys, 1993).2.3 Methods2.3.1 Animals and study siteExperiments were onduted between 26 July 1997 and 2 January 1998 at the Nisia FlorestaForest Experimental Station, EFLEX-IBAMA, (6◦ 5' S, 35◦ 12' W), loated 45 km from Natal(Northeastern Brazil). We used adult males of the lizard Tropidurus hispidus (snout-ventlength [SVL℄ 70-130 mm), a widespread, diurnal, sit-and-wait iguanine lizard in South Ameria(Rodrigues 1987; Vitt 1995). Experimental subjets were adult males (SVL≥ 100 mm) aptured



27in villages lose to the station that had not been used in other experiments. Intruders (adultmales SVL > 90 mm) were used a maximum of three times and were never injured by theexperimental proedure. The same experimental animal was not exposed to the same intrudermore than one. All animals were released in the area of apture at the end of testing.2.3.2 Enlosures and animal husbandryDetails on enlosures and animal husbandry are desribed in Díaz-Uriarte (1999). Brie�y, weused enlosures to minimize variation in behavior. Enlosures were loated in open pathesin plantation areas and measured 2 by 2 m. Enlosures were 1 m high, onstruted fromtransparent plasti attahed to a wood frame. Eah enlosure ontained two refuges madewith briks and roof tiles that o�ered protetion and were readily used by the lizards as hidingplaes. Enlosures were partially overed from above to provide shade during the entral hoursof the day, and also inluded one adult female. In four ases, females disappeared before theend of the testing period, probably from predation. All females were randomly assigned toenlosures/males, exept that females SVL had to be at least 5 mm less than that of the males(in the �eld, males were assoiated with females smaller than themselves; pers. obs.).We plaed a blind 7.5 m away from the enlosure. Using suspended �shing lines, we ouldmove an intruder from behind the blind to inside the enlosure and retrieve it at the end of thetrial, without ever leaving the blind. Enlosures were more than 15 m apart with dense andtall intervening vegetation ensuring no visual ontat between them, and were plaed in areaswhere, during a period of ten months, we only observed four free-ranging adult T. hispidus (onemale, three females). Thus, interations with naturally-ourring onspei�s should have beenextremely rare.Every two to three days lizards were fed a diet of rikets, meal worms, �y maggots, roahesand beetles (dusted with a multi-vitamin preparation �Reptivite� one a week), and a mixtureof egg, powdered milk, and fruit, and were provided with water in several water ontainers.



28Between trials, we thoroughly leaned all briks and tiles and either removed the upper 3-5m of soil, or added 3-5 m of soil, to minimize the persistene of possible hemial marks orpathogens from previous residents. Animals in the enlosures displayed normal antipredator,aggressive, and mating behavior (see Díaz-Uriarte, 1999). While in the enlosures, lizards wererarely approahed by humans.2.3.3 Experimental design, antipredator tests, aggressive behaviorThis study involved two experimental fators: an among-individual treatment (hormonal treat-ment) and a within-individual treatment (territorial intrusion). The hormonal treatment hadthree levels: empty implant (ontrol), single testosterone implant, double testosterone implant.At the time this experiment was arried out, no information was available on the natural rangeof variation of testosterone levels in this speies and therefore we used three di�erent levels forthe testosterone manipulation. In the empty group, animals were given two empty implants;in the single implant, animals were given one empty and one testosterone-�lled implant, and inthe double group, animals were given two testosterone-�lled implants. Hormone implants wereof silasti tubing (5 mm paked length; ID 1.47 mm, OD 1.96 mm) and were plaed subuta-neously, one in eah side of the body, after making a small inision. Implants had been leftin saline solution for 24 h before implantation. Before surgery, animals were immobilized withold and given lidoaine (0.02 ml, 0.2% solution) in the plae of the inision. By the time thelizards were released bak in the enlosures they were fully ative. The implants used in thisstudy were of the same size as those used for male Seloporus jarrovi (Marler & Moore, 1988),whih weigh approximately half as muh as T. hispidus adult males.The territorial intrusion treatment (the within-individual treatment) had two levels: in-truder and ontrol. In both ases, we presented the male lizard with a stimulus (intruder orontrol) and, �ve minutes later, measured its antipredator behavior by simulating a predatoryattak. A test (stimulus presentation + antipredator test) lasted approximately 40 min per



29animal. In the intruder ondition, we introdued an intruder adult male and left it inside theenlosure for a maximum of 15 min. One the resident attaked, the intruder was left inside for3 min or six attaks, whihever ame �rst (this is slightly di�erent from Díaz-Uriarte, 1999).If the resident had not direted at least three attaks during the 3 min, the intruder was leftinside the enlosure until that riterion was met. After the trial was over, we retrieved theintruder to the blind, and then waited another 2 min before arrying out the antipredator test.In the ontrol ondition, we introdued a wood stik (of approximately the same size and oloras an adult male) in plae of an intruder, and left it inside the enlosure for 4 min 10 se (themedian lateny to attak from data in Díaz-Uriarte, 1999).The variables used to haraterize antipredator behavior (Table 2.1, p. 30) re�et the twokey behavioral deisions of a T. hispidus faed with an attaking predator: when to initiateesape from the predator and, after hiding, when to reemerge from the refuge. We used a humanas a simulated predator. To run the antipredator test, one of us positioned himself 13 m awayfrom the enlosure (4.5 m behind the blind) and approahed the lizard diretly at a moderatespeed (mean = 0.22 m/s, s.d. = 0.036 m/s). Whenever the lizard moved, the experimenterstopped for 15 se and reorded his position and the lizard's position, and then approahedagain. The approah-and-stop ontinued until the lizard hid, and then the experimenter movedto a spot 4.5 m from the enlosure, and remained motionless for 20 min. The experimenterreorded all his own movements and the lizard's behavior using an HP-48GX alulator forontinuous event reording. All tests and observations were onduted by the same person(R. D.-U.) when lizards were ative and air temperature (shaded bulb at 1.5 m) was higherthan 26 ◦C. The experiment was blind with respet to hormone treatment: when antipredatortests were onduted, the experimenter was unaware of the hormone treatment group of thelizards. Aggressive behavior was haraterized using the four variables shown in Table 2.2 (p.30), measured during the presentation of the intruder.The territorial intrusion treatment was applied aording to a typial ross-over trial (e.g.,



30
Table 2.1: Response variables used to measure antipredator behavior.Variable DesriptionApproah distane Distane between observer and the lizard when the lizard�rst initiated �ight.Minimum distane Minimum distane between the observer and the lizard be-fore it initiated �ight; the same as approah distane iflizards run diretly to hiding or hide within 15 se of their�rst �ight.Time to reemerge Time sine the lizard hid until it reemerged (i.e., until atleast all the head was visible out of the refuge).Time to full exposure Time sine the lizard hid until it was fully exposed (all thelateral surfae of the body �not inluding the tail� wasvisible out of the refuge.
Table 2.2: Response variables used to measure aggressive behavior.Variable DesriptionLateny to �rst attak Time between when the intruder is introdued in the enlo-sure and the resident direts its �rst attak (rapid movementtowards the intruder) or bite.Interval between �rstand third attaks Time between when the resident direts its �rst and the thirdattak or bite.Displays before attak Number of displays (head bobs, push-ups) by the residentsine the intruder is introdued in the enlosure until theresident direts its �rst attak.Displays after attak Number of displays (head bobs, push-ups) by the residentbetween the time the intruder is returned behind the blindand the antipredator test is started. This is a 2 min period.The time it takes to return an intruder behind the blind isapproximately 2 min.



31Jones & Kenward, 1989; Díaz-Uriarte, 2000 a & b); we used the two sequenes CIIC and ICCI(i.e., animals in sequene CIIC were �rst given the ontrol treatment, the following day the in-truder treatment, the third day the intruder and the fourth day the ontrol treatment). There-fore, the experimental unit is di�erent for the within- and the among-individual treatments.The e�ets of a territorial intrusion are estimated using within-animal omparisons, whereasthe e�ets of the hormonal manipulation are estimated using among-animal omparisons.In addition to the two experimental treatments, two potential soures of variation are en-losures and bathes. The same six enlosures were used throughout the experiment. Weonduted trials in bathes, with eah bath ontaining six males (one per enlosure). We usedbathes as a form of bloking beause: 1) we had no information about possible variation intestosterone levels throughout the year, and this experiment was run over a six month period;2) there was temporal variation in the type of food available; using bathes we ould ensurethat, within a bath, all animals were provided with the same type and quantity of food, andat similar days/hours. In eah bath, two males were assigned to eah of the three levels of thehormone treatment. Within eah of the hormonal treatments, one male was randomly assignedto one of the sequenes and the other male to the other sequene. Assignment of animals to thehormonal treatment was by restrited randomization (ertain assignments were not allowed).Animals were ranked by mass and randomized among hormonal treatments. Non-allowed om-binations were those where the same hormonal treatment would have been assigned to eitherthe two largest or the two smallest animals. Thus, out of a total of 90 possible assignments, 30were not allowed. This was done to ensure adequate interspersion (Hurlbert, 1984) with respetto size to eliminate the possibility of onfounding hormonal manipulations with variations insize.The experiment was designed so that, at ompletion, eah enlosure would have been usedtwie with eah hormonal treatment (and one with eah ombination of hormonal treatment bysequene). This results in a layout resembling a Latin square: in eah bath, the three hormonal



32Table 2.3: Experimental design: enlosure, bath, hormonal treatment, and aggression-treatment sequene. D: double testosterone implant. S: single testosterone implant; E: twoempty implants. Bold: sequene CIIC for the aggression treatment. Empty ells are missingdata. In two ases (one S-male and one E-male), the animals ould not be tested beause ofextreme shyness and lak of habituation. In three ases (two S-males and one E-male) malesdied during the study. In two ases (one S-male and one E-male) males disappeared, probablybeause they were eaten by an opossum (Didelphis albiventris). One animal (S-male) ouldnot be tested beause, during the three week period, there was ontinuous human ativityaround the enlosure. Note that the pattern of missing data annot be related to the hormonalmanipulation. Enlosure1 2 3 4 5 6B 1 D S S E Da 2 S E E D Dt 3 E S E D D S 4 S D D Eh 5 E D D E S6 S E Streatments are repliated twie, and for eah enlosure over the whole experiment, the threehormonal treatments are repliated twie. We randomly hose the square used. This shemewas maintained for the �rst �ve bathes. At the end of the �fth bath, however, we had beenable to get behavioral measurements from ten doubly-implanted males, seven single-implantedmales, and eight empty-implanted males. Keeping the same design for the sixth bath ouldhave resulted in even further unbalane, and thus for the sixth bath we assigned three ofthe enlosures to single-implanted males and three to empty-implanted males, randomly. Theatual design used is shown in Table 2.3 (p. 32).In eah bath the protool was as follows. A male and a female were introdued in eahenlosure on day one. They were fed and allowed to habituate for two or three days. On dayfour or �ve or early on day six, we took males out of the enlosures and surgially implantedthem with testosterone-�lled or empty silasti implants (see below). Males were returned totheir enlosures within three hours. Thus, by day six all animals had been given hormoneimplants. For another 11 to 14 days (most studies with lizards that involve hormone implants



33leave implants in plae between one and three weeks before behavioral testing �e.g., Marler &Moore, 1989, 1991; DeNardo & Sinervo, 1994) animals were fed regularly and habituated to theintruder-delivery system (see Díaz-Uriarte, 1999 for details of habituation). During the nextfour days we measured antipredator behavior, as spei�ed by the sequenes of within-individualtreatments. Most bathes were ompleted by day 22. During the �rst hours of ativity on day23 (i.e., one day after the last test was ompleted), we entered the enlosures and obtained ablood sample from the males. All blood samples were obtained within 4 min of entering theenlosure, and the samples for all males in a bath were obtained within one hour. Usually a newbath of lizards was introdued in the enlosures on day 23 or 24. We removed the testosteroneimplants from males, and males and females were released in the areas where they had beenaptured. Animals were marked by toe-liping; this allowed to individually identify eah animaland prevented using the same animals more than one in the experiment. All animals within abath were subjet to the main manipulations (introduing them in enlosures, baseline tests,surgery) at the same time, but there were minor variations from bath to bath (beause ofweather). Throughout the study period the hours of testing hanged to aommodate shiftsin ativity periods, and as summer progressed we also inreased the shaded area within theenlosures.Blood samples for hormone assays were olleted from the post-orbital sinus using hep-arinized tubes. Blood was entrifuged, and plasma extrated and frozen at -10 ◦C. In additionto the experimental animals, during the months of January, Marh, and Deember we olletedblood samples from another 33 adult males from several nearby areas (see Fig. 2.1, p. 39). Todetermine plasma levels of testosterone and ortiosterone, radioimmunoasay was performed asdesribed in Moore (1986) and Foufopoulos et al. (2000), following ether extration of plasmaand hromatographi separation of the steroid hormones from eah other and from interferinglipids on a diatomaeous earth : propanediol : ethylene glyol miroolumns. Eah sample wasassayed in dupliate. Intra-assay oe�ients of variation were 1.3% for testosterone and 1.8%for ortiosterone. Inter-assay oe�ients of variation were 4.6% for testosterone and 11.4% for



34ortiosterone. Testosterone and ortiosterone plasma levels for all the experimental animalswere determined in a single assay.2.3.4 Statistial analysesE�ets of hormonal manipulations on hormone levels (testosterone and ortiosterone) andaggressive behavior (Table 2.2, p. 30) were initially examined using linear mixed-e�ets models,with
yijkl = µ + ηi + ξj + (ηξ)ij + ck + bl + eijkl, (2.1)where y is the response, in the �xed e�ets part µ is the interept, η is the hormone treatment,

ξ is the e�et of sequene, and the term in parentheses is the interation hormone*sequene. Inthe random e�ets part, c, b, and e are the random e�ets of enlosure, bath, and individual,respetively; all the random e�et terms are assumed normal and independent of eah other.For hormone levels, only one measure per individual was available. For aggressive behavior,two observations were available; however, as the objetive was to relate aggressive behavior tohormone treatment, before the analyses we obtained the mean of the two responses (or themean of a suitable funtion of the responses, suh as the log) for eah individual. When testingfor e�ets of bath and/or enlosure on testosterone and ortiosterone plasma levels, however,the p-values were obtained from ANOVA models with bath and enlosure as �xed e�ets,sine likelihood ratio tests of the hypothesis that a variane omponent is zero an be overlyonservative (Pinheiro & Bates, 2000; Verbeke & Molenberghs, 1997).We examined e�ets of hormonal manipulations on aggressive behavior with multivariateanalysis of variane (MANOVA; Krzanowski, 1990; Morrison, 1990), with hormone treatmentgroup as the explanatory variable and the four aggressive behavior variables as responses. Wealso examined the e�ets of plasma levels of testosterone and ortiosterone and their possibleinteration on aggressive behavior using multivariate regression (the extension of MANOVA



35for ontinuous explanatory variables). Beause of the exploratory nature of this part of thestudy, and to prevent for dereases in power related to violations of assumptions of MANOVA(equality of ovariane matries aross groups) we also examined test-wise p-values of eah ofthe responses variables. To provide protetion against in�ated Type I error rates, we adjustedfor for multiple tests using Holm's sequentially rejetive proedure (see Rie, 1989; Wright,1992), with an family-wise error rate of 15 % (see Chandler, 1995).Approah distane and minimum distane (Table 2.1, p. 30) were analyzed with linearmixed-e�ets models. We used the parameterizations in Jones & Kenward (1989), addingseveral ovariates and random e�ets (see also Díaz-Uriarte, 2000 b); the full model examinedwas
yijklmn = µ + ηi + ξj + (ηξ)ij + ck + bl + skl + πm + τn[j,m] +

λn[j,m−1] + (ηπ)im + (ητ)in + (ηλ)in + eijklmn, (2.2)where everything is as in expression (2.1), with the addition of: π (period e�et), τ (territorialintrusion e�et), λ (�rst-order arry-over e�et), and s (random e�et of subjet �lizard);terms in parentheses denote interations. As is ommon in ross-over designs, we assumedonly �rst order arry-over e�ets and no interations of arry-over by treatment (i.e., arry-over of treatment A on treatment B is the same as arry-over of treatment A on treatmentA). When analyzing approah distane, we also inluded a main e�et for approah speedduring the simulated predatory attak, as well as the interations of approah speed withhormone treatment, sequene, and territorial intrusion. To examine the e�ets of plasma levelsof testosterone and ortiosterone, we used a model similar to (2.2), but we �tted simultaneouslylog testosterone and ortiosterone plasma levels instead of hormone treatment. To aount forpossible non-linear e�ets of plasma levels of testosterone and ortiosterone, we �tted modelswith quadrati terms and used added-variable plots (e.g., Hoking, 1996).To �t the mixed-e�ets models, we proeeded as explained in Pinheiro & Bates (2000), Diggle



36et al. (1994), and Littell et al. (1996). Brie�y, we started with the full model, examining the �tof di�erent ovariane strutures (ompound symmetri, autoregressive, heterosedasti) for theappropriate random e�ets; we used residual plots to asses the adequay of the model, the needfor transformations of the response, and possible in�uential points. After seleting a ovarianestruture, �xed e�ets terms were dropped sequentially from the model until all remainingterms had p < 0.05. If period (as ategorial variable) was left in the model, we attemptedto simplify this model by �tting linear and quadrati terms of period as a ontinuous variable.In addition, if the �nal model did not inlude some of the variables of primary importane(hormone treatment, territorial intrusion, their interations, and the interation of hormonetreatment with sequene) we reexamined if they needed to be inluded in the �nal model.The variables time to full exposure and time to reemerge had 46 and 11 out of 110 obser-vations (about 42% and 10%) right-ensored (i.e., in 46 trials lizards had not fully reemergedand in 11 trials lizards had not reemerged at the end of the 20 min observation period), andtherefore require the use of survival analysis. We used Cox's proportional hazards model (e.g.,Klein & Moeshbereger, 1997), with a full model analogous to the one in (2.2). Brie�y, with thismodel the response is the hazard ratio, whih an be thought of as the instantaneous probabilityof reemergene� given no reemergene until that moment; this hazard ratio is modeled as theprodut of a baseline hazard ratio*exponential of the sum of the ovariate e�ets. To aount forrepeated measures within individuals, we used gamma frailty models (Klein & Moeshberger,1997; Therneau & Grambsh, 2000; a frailty is equivalent to a random e�et); these modelsgenerally yielded the same results as the marginal Cox model for multivariate survival data ofLee, Wei and ollaborators (Lee et al., 1992; Lin, 1994; Wei et al., 1989). However, statisti-al tools for the inlusion of more than one frailty term are still not well developed; thus, forthe survival analyses we regarded bath and enlosure as �xed-e�ets. We examined residualsfor model adequay and in�uential points (Klein & Moeshberger, 1997; Collet, 1994); model�tting proeeded analogous to approah and minimum distane (exept testing was based onlikelihood-ratio tests for frailty models).



37In terms of the hypothesis disussed in the introdution, if testosterone modi�es the e�ets ofpast aggressive interations on antipredator behavior, we should observe a signi�ant interationterm between hormone treatment and territorial intrusion treatment (ητ). In the absene ofthis interation, an overall hange in antipredator behavior related to hormonal manipulationswill be manifested as a signi�ant main e�et of hormone treatment (η).We examined possible phenotypi orrelations among antipredator and aggressive responseswith anonial orrelation analysis (e.g., Krzanowski, 1990; Morrison, 1990) using the four ag-gressive responses and two of the antipredator responses. Brie�y, anonial orrelation analysisattempts to �nd the largest possible orrelation(s) between a linear ombination of the �rst setof variables and a linear ombination of the seond set of variables; these linear ombinationsare the anonial variates, and the orrelations among them are the anonial orrelations. Inour partiular ase, there are two anonial orrelations (where the seond anonial orrela-tion is the largest possible, onstrained by the new anonial variates being unorrelated withthe �rst ones). Thus, anonial orrelation is somewhat similar to multiple regression, exeptboth the �response� and the �preditors� are multivariate, and we make no distintion betweenresponse and preditor variables. We averaged, for eah individual, the value of eah aggressiveresponse (or a suitable funtion of it, suh as log) over the two aggressive enounters. Forthe antipredator responses, however, we only used the �rst trial where the animal had beensubjeted to a ontrol (i.e., not a territorial intrusion); using all four trials for antipredatorresponse ould have onfounded variation in antipredator behavior with variation in antipreda-tor behavior following a territorial intrusion. Similarly, beause of sequene and period e�etsin antipredator responses (see Results), the use of both ontrol trials ould have inreased thevariability of the responses, and it is not lear how to adjust for sequene e�ets in the preseneof sequene*hormone interations (see Results). For all observations from the �rst ontrol trialApproah and Minimum distane had idential values, and thus only one of them was usedin this analyses. Time to Full Exposure was not inluded as 40% of the observations wereensored (see Results). We examined the hypothesis of no assoiation between aggressive and



38antipredator behavior by testing that the anonial orrelations are zero with a likelihood ratiotest, as explained in Krzanowski (1990, p. 447 and �.).Linear mixed-e�ets models were �tted using the R library nlme (Pinheiro & Bates, 2000)and SAS's PROC MIXED (Littell et al. 1996). Survival models were �tted with the survival5 library (originally by T. Therneau, ported to R by T. Lumley) for R. Canonial orrelationswere performed with R (library mva). All p-values are two-sided.2.4 Results2.4.1 E�ets of hormonal manipulations on hormone plasma levels and ag-gressive behaviorFigure 2.1 (p. 39) shows the plasma testosterone and ortiosterone levels for the three treatmentgroups and a set of 33 wild adult males. We used (natural) log transformed data; analyses withdata in the original sale showed apparent outliers and very highly in�uential points, as wellas asymmetri normal probability plots; moreover, a log transformation helped stabilize thevariane and might be a natural transformation for a measure of onentration (where, in theoriginal sale, the variane an inrease with the mean). For log testosterone, there was noevidene of either bath �i.e., seasonal hanges� or enlosure e�ets (F5,15 = 1.44, p = 0.2671and F5,15 = 0.40, p = 0.8414, respetively), but strong evidene (F2,25 = 8.58, p = 0.0015)of hormone treatment; these onlusions do not hange if we exlude the individual from thesingle implanted group with lowest testosterone level (this individual had a studentized residualof -3.26, whih is signi�ant at the 0.05 level after bonferroni orretion). For log ortiosteroneplasma levels there was no evidene of bath, enlosure, or hormone treatment e�ets (F5,15 =

0.64, p = 0.6716, F5,15 = 2.00, p = 0.1362, and F2,25 = 1.33, p = 0.2833, respetively).However, there was strong evidene of a derease in the variane of log ortiosterone plasmalevels with hormone treatment (χ2
2 = 10.63, p = 0.0049 from a likelihood ratio test between
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Figure 2.1: Plasma testosterone and ortiosterone levels of the experimental animals and a setof 33 wild aught males.heterosedasti and homosedasti models). There was no evidene of an interation betweensequene and hormone treatment or of a main e�et of sequene in either ortiosterone ortestosterone plasma levels (interation: F2,22 = 0.41 and 0.80, p = 0.6692 and 0.4642 forortiosterone and testosterone, respetively; main e�et of sequene: F1,22 = 0.23 and 0.37,
p = 0.6363 and 0.5490). There was no evidene of a di�erene in log ortiosterone plasmalevels between wild and empty implanted animals (t15.03 = 0.59, p = 0.5648 from a Welhtwo-sample t-test), but there was strong evidene of higher testosterone plasma levels in emptyimplanted than wild animals (t17.2 = 3.23, p = 0.0049), in spite of the large overlap in values.These results do not hange if we only use wild animals with SVL > 100 mm (t27.11 = 4.59, p <

0.0001). There was no orrelation between log plasma levels of testosterone and ortiosterone(ρ = 0.03, 28 d.f., p = 0.4435). Whether animals had been involved in an aggressive interationthe day before or two days before did not a�et plasma levels of log testosterone (F1,23 = 0.88,
p = 0.3584) or log ortiosterone (F1,26 = 0.84, p = 0.3666).
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Figure 2.2: Aggressive behavior of resident male as a funtion of hormone treatment group.Explanation of variables in Table 2.2 (p. 30).The y-axis is log(seonds) for the time variables and log(number +0.5) for number of displaysbefore and after attak.A MANOVA using the aggressive behavior variables (Table 2.2, p. 30) provided no evidenefor e�ets of testosterone manipulations (Pillai's trae=0.37, F8,42 = 1.20, p = 0.32), as an beseen from Fig. 2.2 (p. 40). A multivariate regression using log testosterone and log ortiosteroneplasma levels and their interation as independent variables provided no evidene of an intera-tion between plasma levels of testosterone and ortiosterone (Pillai's trae=0.12, F4,19 = 0.65,
p = 0.64) or a main e�et of testosterone (Pillai's trae=0.24, F4,20 = 1.59, p = 0.21), and veryweak evidene (Pillai's trae=0.29, F4,20 = 2.06, p = 0.12) that animals with higher plasma



41levels of ortiosterone are less aggressive in intruder enounters. In fat, test-wise p-values forthe e�ets of ortiosterone on aggressive behavior variables (Table 2.2, p. 30) are 0.0256 forlateny to attak (log of lateny to attak inreases with log of ortiosterone with slope ± s.e.
0.2806±0.1164); p=0.0414 for interval between �rst and third attak (interval between �rst andthird attak inreases with inreasing ortiosterone (slope ± s.e: 0.4035 ± 0.1881); p=0.0641for number of displays after attak (slope ± s.e. for ortiosterone: −0.40±0.20); p=0.7325 fornumber of displays before the �rst attak. Ordering the p-values and using Holm's method, theadjusted p-values for ortiosterone are 0.1024, 0.1242, and 0.1282 (lateny to attak, intervalbetween �rst and third attak, number of displays after attak), suggesting that aggressionmight derease with inreasing ortiosterone levels.

When examining the orrelation between aggressive and antipredator behavior, a likelihoodratio test of the hypothesis that none of the anonial orrelations was di�erent from zero yieldsa p-value of 0.1236 (χ2
8 = 12.67 for assoiation among aggressive and antipredator responseswhih, if anything, based upon the loadings, would suggest that animals that minimize risksfrom a predator are also those with higher aggressiveness). Thus, there is no evidene of anassoiation between aggressive and antipredator behaviors.

There was no evidene of hanges in mass or SVL in the experimental males (paired t-tests;omparison �nal and initial mass: t27 = 0.31, p = 0.7579; omparison �nal and initial SVL:
t27 = 1.04, p = 0.3085). More importantly, there was no evidene that hanges in mass or SVLwere assoiated with hormone treatment group, plasma levels of testosterone, or plasma levelsof ortiosterone (all p-values>0.25).



422.4.2 Antipredator behavior: e�ets of hormonal manipulations and terri-torial intrusions2.4.2.1 Approah and minimum distaneThe model for log minimum distane provides strong evidene for period e�ets (F1,80.3 = 14.66,
p = 0.0003) and territorial intrusion e�ets (F1,80.3 = 14.62, p = 0.0003); the model for approahdistane provides strong evidene of period e�ets (F1,65.4 = 9.73, p = 0.0027), and of aninteration between territorial intrusion and approah speed (F1,69.8 = 5.06, p = 0.0276). Inboth ases, there is a derease in distane with period, whih suggests habituation: lizardsallowed the predator to approah loser in later days of testing. For minimum distane, aterritorial intrusion dereased minimum distane: lizards allowed a predator to approah loserbefore �eeing if the predator attaked 5 min after a territorial intrusion. For approah distane,if the predator attaked after a territorial intrusion lizards hid sooner when the predator'sapproah was faster (from a reparameterized model, regression oe�ients (± s.e.) for ontroland territorial intruder are 1.63 (±2.05) and 6.78 (±1.63); t79.6 = 0.79; t78 = 4.17; p = 0.4315and p < 0.0001 respetively).In addition, for both log approah and minimum distane there was evidene of an intera-tion between sequene and hormone treatment (F2,21.6 = 4.31, p = 0.0266, and F2,22.1 = 4.74,
p = 0.0194) for approah and minimum distane respetively. As an be seen in Figure 2.3 (p.44) both empty-implanted and single-implanted animals have smaller minimum distanes whenin sequene 1 (ICCI), whereas the pattern is reversed for doubly implanted animals; analogousresults hold for approah distane.The interpretation of a sequene by hormone interation is ompliated. First, the datashow strong evidene of a hormone*sequene interation but not of hormone*arry-over, hor-mone*territorial intrusion or hormone*period interations. Di�erenes among sequenes an bethe result of bad luk in the randomization proess or of high-order arry-over e�ets (see also



43Díaz-Uriarte 2000 b): a sequene term re�ets all that is di�erent among sequenes that is notaounted for by treatment or arry-over e�ets. As is ommon in ross-over trials, we haveused a very restritive model for arry-over e�ets, whih makes, among others, the assumptionthat there are only �rst-order arry-over e�ets. However, in this ase it seems that the �rstperiod has an e�et that lasts for the rest of the experiment.To understand the results, we an analyze eah period on its own for evidene of se-quene*hormone interations, whih would be equivalent to territorial intrusion*hormone in-terations, as within eah period a sequene fully determines the type of territorial intrusiontreatment. In these analyses, in periods one to three there was evidene (all p-values < 0.05) ofa hormone by sequene (or territorial intrusion) interation (in the fourth period the evideneis weak �p = 0.13). The test from the �rst period provided evidene of an interation betweenterritorial intrusion and hormone treatment; however, analyses of periods 2 to 4 onfound thepossible e�et of a true territorial intrusion*hormone interation with the e�ets of past events(�rst or higher-order arry-over e�ets). We an also examine if the di�erene (in the responsevariable) between the �rst and seond period, between the seond and third, between the thirdand fourth, and between the �rst and the mean of the other three, shows any evidene of se-quene*hormone interations; in other words, we an examine if the hange in response variablefrom one period to the next is di�erent among di�erent hormone treatments. There was noevidene of interation (p > 0.09 in all eight ases) or of main e�ets (p > 0.13 in all eight ases)of hormone treatment: after the �rst period, the hange in response variable between one periodand the following was not a�eted by hormone treatment. In other words, the hange betweenperiods is the same among levels of hormonal treatment, whih means that e�ets of territorialintrusions are additive after the �rst period. Therefore, the interation between sequene andhormone deteted in the full model is the onsequene of an interation between territorialintrusion*hormone in the �rst period that is maintained for the rest of the study.These patterns an be seen from Fig. 2.3 (p. 44) b & : the trajetories over time are



44roughly parallel aross the three hormone treatment groups within eah sequene. Within eahsequene we an observe an overall derease in response variable over time and a derease inresponse variable orresponding to an intruder treatment. The parallel lines over time show theadditive e�ets of period and intruder treatment. However, there were large di�erenes amonghormone treatment levels in the response in the �rst period: for both empty implanted andsingle implanted animals minimum (and approah) distane were smaller following a onspei�enounter, but in the doubly-implanted animals this pattern was reversed; if we ompare onlybetween empty implanted and single implanted the patterns were the same in both sequenes,with the single implanted having larger approah and minimum distanes than the emptyimplanted. In summary, in the �rst period the e�et of a territorial intrusion depends onhormone treatment:, but after the �rst period e�ets of territorial intrusions and period atadditively with respet to the value from the �rst period.Given that the double-implanted group showed a behavior learly distint from the other twogroups, and showed little overlap in their testosterone levels with the other two experimentalgroups, we next analyzed the data exluding the double-implanted animals. There was no
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45evidene of a hormone by sequene interation (F1,14 = 1.37, p = 0.2613, and F1,14 = 0.43,
p = 0.5220, for approah and minimum distane respetively). There was, however, evidene ofdi�erenes between hormone treatments (F1,15 = 6.74, p = 0.0203, F1,14 = 4.23, p = 0.0570, forapproah and minimum distane, respetively), where animals with a single implant have largerapproah and minimum distanes than the empty implanted males. The rest of the onlusionsfor e�ets of period, sequene, and territorial intrusion �or territorial intrusion by approahspeed� remained unhanged (for approah distane p-values are 0.0480, 0.0042 and 0.0028 forsequene, period and territorial intrusion by approah speed; for minimum distane p-valuesare 0.0394, 0.0004 and 0.0014 for sequene, period and territorial intrusion).

Even though there was an e�et of hormone treatment level on approah and minimumdistane, when we �tted models that inluded log testosterone and ortiosterone plasma levelsinstead of hormone treatment group for empty and single implanted animals we did not �ndany di�erenes in either approah or minimum distane related to testosterone plasma levels(p > 0.8 for both minimum and approah distane). For approah distane, however, there wasa signi�ant interation between ortiosterone plasma levels and territorial intrusion (F1,40 =

4.85, p = 0.0335) where there was an inrease in approah distane with inreasing levels ofortiosterone when animals were subjet to a ontrol presentation, but there was no hange inapproah distane with ortiosterone plasma levels when animals were subjet to a territorialintrusion (and, for an animal with a plasma ortiosterone level equal to the observed meanortiosterone plasma level, approah distane is smaller when exposed to an intruder thanwhen exposed to a ontrol presentation). There was no evidene of suh an interation forminimum distane (F1,50 = 0.81, p = 0.37). None of these onlusions are hanged by applyingHolm's multiple omparisons approah.



462.4.2.2 Time to reemerge and time to full exposureAnalyses of time to reemerge using hazard models provided strong evidene of di�erenes amonghormone level treatment groups (χ2
2 = 14.61, p = 0.0007) where double-implanted animalsreemerged later than the empty implanted and single implanted reemerged slightly sooner thanthe empty implanted. Analyses of time to full exposure yielded results in the same diretion,although not signi�ant (χ2

2 = 4.74, p = 0.0934). If we spei�ally test for di�erenes betweenthe double implanted and the other two groups, there was evidene of di�erenes for bothresponse variables (χ2
1 = 3.79, p = 0.052,χ2

1 = 7.21, p = 0.0072, for time to reemerge andtime to full exposure, respetively). If we exlude the double-implanted animals, there wasno evidene of di�erenes between empty and single implanted for any of the two responsevariables (χ2
1 = 1.74, p = 0.19, χ2

1 = 0.46, p = 0.50, for time to reemerge and time to fullexposure, respetively; the hazard rate for a double implanted animal was 0.63 that of any ofthe other two groups for time to reemerge, and 0.392 for time to full exposure). Analyses usingtestosterone and ortiosterone plasma levels from empty and single-implanted animals did notshow any evidene of di�erenes in either response variable related to hormone plasma levels(for testosterone both p-values > 0.6; for ortiosterone both p-values > 0.19).For both response variables, there was very strong evidene that being subjet to a territorialintrusion resulted in faster reemergene (χ2
1 = 18.19, p < 0.0001, χ2

1 = 15.92, p < 0.0001, fortime to reemerge and time to full exposure, respetively, in analyses that inlude the threehormone treatment groups (χ2
1 = 22.9, p < 0.0001, χ2

1 = 11.61, p < 0.0011, for time to reemergeand time to full exposure, respetively, in analyses that inlude only empty and single implantedanimals), as shown in Fig. 2.4 (p. 47). The hazard rate of an animal exposed to a onspei�intrusion is 3.78 times that of an animal following a ontrol presentation for time to reemerge,and 2.71 for time to full exposure (from analyses that exlude the double implanted animals;similar results are obtained from analyses with all three groups). None of these onlusions arehanged by applying Holm's multiple omparisons approah.
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Figure 2.4: Survival urves of time to reemerge based on the Kaplan-Meier estimator of thesurvival funtion. The y-axis an also be understood as �probability of not having reemergedby time t�.2.5 DisussionThe initial hypothesis that testosterone would modify antipredator behavior, so that animalswith higher testosterone levels would inur greater predation risks, was based upon the assump-tion that testosterone results in inreased alloation to territorial defense (see Introdution). Inthis study, the lak of an e�et of testosterone treatment on aggressive behavior suggests, to theontrary, that in male T. hispidus testosterone does not result in an inrease in the alloationto territorial defense (at the expense of other osts). Thus, there is no reason to expet aninrease in exposure to predation related to testosterone manipulations in males of this speies,or an interation between testosterone treatment and the e�ets of a past territorial intrusion.Our results show, for empty and single implanted animals, that inreased testosterone wasnot assoiated with inreased exposure to predation; in fat, inreased testosterone resulted indereased exposure to predation as measured by hanges in approah and minimum distane.Animals with double implants exhibited a di�erent pattern; �rst, they were the ones that took



48signi�antly longer to reemerge; seond, and more strikingly, the e�et of sequene (type of �rsttrial �ontrol or intruder) on approah distane was opposite to that observed in the other twogroups (see Fig. 2.3, p. 44). These di�erenes between the double implanted animals and theother two groups ould be related to pharmaologial e�ets of the double testosterone implant(the double implanted animals are outside the range of testosterone levels for wild animals; seeFig. 2.1, p. 39) and also to the e�ets of the testosterone implants on other hormones, suh asortiosterone; together, these hanges might a�et the response to stimulae in ways that di�erfrom the other two treatment groups.The above results do not prelude hanges in antipredator behavior, and interations be-tween testosterone levels and e�ets of past territorial intrusions on antipredator behavior, inthe diretion predited in the introdution where there is an inrease in aggression with testos-terone (e.g., Seloporus jarrovi : Moore & Marler, 1987; Anolis sagrei : Tokarz, 1987, 1995; Utastansburiana: DeNardo & Sinervo, 1994). Our results suggest that testosterone does not playa role in the aggressive behavior of male T. hispidus, a tropial lizard with �exible breedingpatterns (from marked seasonality �e.g., Prieto et al., 1970� to extended breeding seasons�Vitt & Goldberg, 1983; pers. obs.), where both male and female are territorial year around,at least in the study area. We are not aware of other studies on the e�ets of testosteronemanipulations in hormone levels of tropial lizards, but studies with tropial birds that are ter-ritorial year around have yielded mixed results (see Hau et al., 2000; Wikelski et al., 1999; andreferenes therein) indiating that testosterone might not neessarily play a role in the aggres-sive behavior of tropial vertebrates that are aggressive throughout the year. However, a role oftestosterone on the aggressive and territorial behavior annot be exluded without additionalstudies involving astration (e.g., Moore & Marler, 1987), and/or antiandrogen treatment (e.g.,Tokarz, 1987). Moreover, the lak of e�ets of testosterone manipulations on aggressive behav-ior in this experiment ould be related to the already elevated testosterone plasma levels of theempty implanted animals ompared to the wild animals (e.g., Fig. 2.1, p. 39). The di�erenesbetween wild males and empty implanted males an be aused by the housing onditions, in



49partiular the lose proximity of a female during three weeks, a regular food supply, and notbeing hallenged by other males for three weeks.Our work, though, suggest that ortiosterone ould play a role on how past aggressiveinterations a�et antipredator behavior. First, there was some evidene that inreased in or-tiosterone resulted in dereased aggression towards intruders; seond, the interation betweenortiosterone and territorial intrusion on approah distane indiates that, in the absene ofpast onspei� intrusions, inreased ortiosterone is assoiated with dereased exposure topredation, but that these e�ets of ortiosterone an be overridden by a past territorial in-trusion (sine ortiosterone was not assoiated with approah distane following a onspei�intrusion).The results of this study provide additional on�rmation (on the same speies) of the resultsin Díaz-Uriarte (1999): animals inreased their exposure to predators following an aggressiveenounter. However, in this study we found this e�et in both approah distane and reemer-gene behavior, whereas Díaz-Uriarte (1999) only found this e�et on reemergene behavior.Reent theoretial work (Díaz-Uriarte, 2000) indiates that the inreased ost of hiding follow-ing a onspei� intrusion should only modify reemergene behavior, not when to hide from anattaking predator. However, other fators an operate together with inreased ost of hiding(estimation of the probability that the approahing predator is an attaking one, interruptedforaging and environmental sampling) that result in a derease in approah distane. Mostof the experimental onditions of both studies were very similar, but three di�erenes ouldexplain lak of detetion of e�ets on approah distane in Díaz-Uriarte (1999): (1) smallersample size (15 vs. 28 animals); (2) smaller number of measures per individual (two vs. four);(3) faster approah speed 0.42 m/s vs. 0.22 m/s). Beause of the �rst two di�erenes this exper-iment had higher statistial power than the one in Díaz-Uriarte (1999); slower approah speedin this experiment means that the same derease in approah distane does not result in thesame inrease in mortality risk, and therefore other fators (e.g., estimation of the probability



50of an attak by the predator) ould have detetable e�ets in hiding.These di�erenes in experimental onditions might also explain why we found sequene ef-fets in approah and minimum distane in this experiment, but none were found in Díaz-Uriarte(1999). A more likely explanation, though, is the di�erene in the time that experimental malesare isolated from other onspei� males before the tests were onduted. In Díaz-Uriarte (1999)animals were preluded from �ghting with other onspei� males for one week. In ontrast, inthis experiment males were isolated for about three weeks, and thus an aggressive interationould have a muh larger and longer lasting e�et on antipredator behavior, and explain whyanimals from the ICCI (intruder/ontrol/ontrol/intruder) sequene showed, overall, smallerapproah and minimum distanes. These long lasting e�ets, however, were not a�eted bytestosterone manipulations. These long lasting e�ets ould not have been deteted with othertypes of designs, and should be taken into aount in future studies.In spite of the strong e�ets of a past aggressive interation on antipredator behavior, wefound no ovariation between aggressive and antipredator behaviors (i.e., males that showedmore aggressive behavior towards onspei�s did not show bolder behavior towards a predator).These data, thus, onstitute a ounter-example of the idea that a orrelation between aggressiveand antipredator behavior ould share a ommon physiologial basis and be widespread innature (Reihert & Hedrik, 1993). Male T. hispidus annot be positioned along a single shy-bold axis, where aggression and antipredator responses are essentially the manifestation of anunderlying �fearfulness� trait (Huntingford, 1976; see also Wilson et al., 1993, 1994). The lakof orrelation between aggressive and antipredator behavior is not inonsistent with the stronge�ets of a past aggressive interation on antipredator behavior. The latter are based on within-individual e�ets, whereas the former relate to among-individual ovariation in aggressive andantipredator responses. Moreover, the lak of among-individual ovariation in antipredator andaggressive behavior does not exlude that, within individuals, an inrease in the aggressivenessof the interation ould result in a larger inrease in predator exposure.
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55Chapter 3
Territorial intrusion risk andantipredator behaviour: amathematial model
3.1 AbstratIn territorial animals that hide to avoid predators, a predatory attak reates a on�it beausea hiding animal annot defend its territory from onspei� intruders. When intruders arepersistent, a past onspei� intrusion informs a territorial resident that future intrusions bythe same animal are likely. Using a mathematial model, I examine the e�ets that pastterritorial intrusions an have on antipredator behaviour when intruders are persistent. Pastaggressive intrusions rarely a�et time to hide: the optimal behaviour is to hide as soon asthe predator initiates its attak. Time to reemerge is strongly a�eted by past aggressiveinterations (animals reemerge sooner from a refuge), and these e�ets depend on the timeof the predator's attak, the reintruder's pattern of return, and the intrusion rates of otheronspei�s. Di�erenes between my �ndings and those from previous studies suggest that thetrade-o� between antipredator behaviour and territorial defene an involve di�erent types ofosts than the trade-o� antipredator behaviour- foraging. The results of this model establisha onnetion between population level proesses, mating system and defensibility of resoures,and antipredator behaviour, and an have empirial and theoretial relevane for studies of the



56(o)evolution and eologial onsequenes of aggressive and antipredator strategies.3.2 IntrodutionThe antipredator strategy of territorial animals should be a�eted by the need to defend aterritory. Theoretial and empirial work on the trade�o� between predator avoidane andforaging has shown that antipredator behaviour will hange when there are hanges in theterms of the trade�o� between mortality risk from predation and osts of hiding/esapingfrom predators (see Clark, 1994; Ydenberg & Dill, 1986; reviews in Lima & Dill, 1990; Lima,1998). For instane, animals adopt behavioural strategies that lead to an inrease in exposureto predation (e.g., delaying esape from a predator) when the osts of interrupting foraginginrease (e.g., when foraging at a better path).In ontrast to the wealth of studies on the trade-o� between antipredator and foragingbehaviour, there is little researh on the trade�o� between antipredator behaviour and territorialdefene, even though the reprodutive suess of territorial animals an be strongly a�eted bysuessful territorial defene. The approah of a predator reates on�iting demands on aterritorial animal: hiding minimises mortality from predation but dereases the hanes ofdeteting and hasing away onspei� intruders (i.e., inreases the territorial osts of hiding).There is evidene that inreases in predation risk tend to result in a derease in the numberor intensity of aggressive interations (e.g., Baker et al., 1999; Brik, 1999; Helfman, 1989;Krupa & Sih, 1998; Martel, 1996; Whitehouse, 1997; Wisenden & Sargent, 1997), but thee�ets of aggressive interations on antipredator behaviour have been rarely examined (butsee Brik, 1998; Cooper, 1999; Díaz-Uriarte, 1999; Jakobsson et al., 1995). The trade�o�between territorial defene and predator avoidane an be partiularly interesting if there areshort�term hanges in the territorial osts of hiding that are aused by loal hanges in thesoial environment. In fat, in some territorial speies intruders enlarge or obtain territoriesby intruding persistently into the territories of settled animals (review in Stamps & Krishnan,



571995, 1998). In these ases a reent onspei� intrusion indiates an inreased probabilityof future intrusions and therefore the territorial osts of hiding ould be very high followinga onspei� intrusion; thus, antipredator behaviour should hange to derease the hanes ofterritorial intrusions at the ost of inreased predation risks.There is reent empirial evidene (Díaz-Uriarte, 1999; Díaz-Uriarte & Marler, in prep.)that territorial males of the lizard Tropidurus hispidus inrease their exposure to predationwhen a predator approahes shortly after the territorial male has hased away a onspei�intruder male, onsistent with the arguments above. In these experiments, male lizards werepresented (and allowed to �ght) with a onspei� intruder male, and 5 min later were subjetto a simulated predatory attak by a human. Antipredator behaviour was haraterised usingtwo types of variables: 1) when did the lizard initiate esape from the predator; 2) when didthe lizard reemerge from the refuge after hiding. In the �rst study, only time to reemerge froma refuge is a�eted by past aggressive interations; in ontrast, initiation of hiding does notdepend on past aggressive interations. In the seond study, both time to reemerge from arefuge and initiation of hiding are a�eted by past aggressive interations.The onditions that give rise to a trade-o� between antipredator and territorial behaviourin males of the lizard Tropidurus hispidus are likely to be ommon to many other speies thatare both territorial and prey of other animals. Thus e�ets of past aggressive interations onantipredator behaviour are likely to be widespread, but demographi and soial fators thatvary both within and among speies, suh as population density and behaviour of reintruders,should a�et this trade-o�. The purpose of this paper is to investigate how past aggressiveinterations should a�et antipredator behaviour in territorial animals that need to defend theirterritories against onspei�s and are also potential prey that use refuges to avoid predation.The model fouses on the e�ets of the reintruder's behaviour, the probability of intrusionof other onspei�s, and the timing of predator attak relative to the end of the onspei�intrusion.



583.3 The model3.3.1 The basi problemSuppose that a territorial male is defending an area that overlaps the home ranges of severalfemales. If other males invade the territory while the resident is hiding they ould mate with thefemales in the territory and the number of females that an be fertilised by the invading malesinreases with the time these invading males spend in the territory before being evited. Thismale hases away a onspei� intruder at time 0. Some time later (tp) a predator initiatesapproah (the predator is deteted as soon as it initiates approah). The resident needs todeide: (1) when to esape (time to hide, th), and (2) when to reemerge (time to reemerge,
tr). The longer the resident waits to hide (i.e., the larger the th) or the shorter the time toreemerge, the more likely it is to be killed by the predator. On the other hand, the longer theanimal remains hiding the more likely it is that intruders an invade the territory. One anintruder enters the territory, it stays there until the resident reemerges, and the reprodutivesuess of the resident dereases with time that intruders spend in its territory. There are twotypes of intruders, the re-intruder that was hased away at time 0 and other onspei�s fromthe overall population. The e�ets of the prior aggressive enounter (the animal hased awayat time 0) are only related to the probability that the reintruder returns, but do not a�etthe rate of intrusion of other onspei�s. Intruders annot suessfully invade the territory ifthe predator is in the area or if the territorial resident is not hiding, but they an attempt toreinvade during these periods. The lak of attempted reinvasion by the reintruder prior to theresident hiding an provide the resident with information on the probability of a reinvasion inthe future.I assume that the resident has to maximise �tness, the produt of its probability of survivingthe attak of the predator times its expeted reprodutive suess, by hoosing optimal valuesof time to hide (th) and time to reemerge (tr). In the next setions I give details about eah



59omponent of the model (see also Table 3.1, p. 62, for summary of variables). In this model,I make many simplifying assumptions, with funtion seletion ditated by the desire to havesimple funtions that are, nonetheless, biologially plausible.3.3.2 Surviving the predator's attakThe main biologial assumptions that I make with respet to the predator's attak are: (1) thatsurvivorship is a monotonially dereasing funtion of time to hide; (2) that survivorship is amonotonially inreasing funtion of time to reemerge; (3) that the predator's attak is a fastevent; (4) that the derease in survivorship from delaying hiding for one unit of time is largerthan the derease in survivorship from reemerging one unit earlier for su�iently large valuesof time to reemerge. I have implemented these as follows.The probability of surviving the initial attak of the predator dereases linearly with th sothat at th ≥ 10 the probability of surviving is 0. Thus, the probability of surviving the initialattak is
1 −

th
10

(3.1)for all 0 ≤ th ≤ 10, and 0 otherwise. One the resident hides in the refuge, the predator staysaround the area but has a onstant rate of leaving ρ (thus, the predator's time of leaving is anexponential distribution with mean 1/ρ). I assume that the resident is killed if it reemerges fromthe refuge while the predator is in the area. Thus, the probability that the resident survivesreemergene is the probability that the predator has left the area by tr or
1 − e−ρtr . (3.2)The probability of surviving the attak is therefore the produt of expressions 3.1 and 3.2.There is no mortality while the resident is hiding.



603.3.3 Time that intruders spend in the territoryI assume that the derease in reprodutive suess of the resident is a linear funtion of thetime that intruders spend in its territory. Final reprodutive suess is
I − cTotal time intruders spend in territory (3.3)where I is the initial value or initial territorial assets (i.e., the reprodutive suess yielded by aterritory before any intruder spends any time at all, or before any intruder auses any derease)and c is a saling fator for the rate of derease of reprodutive suess with time that intrudersspend in the territory (the larger c the greater the derease in reprodutive suess per unittime that intruders spend in the territory).

3.3.3.1 Time spent by other onspei�sI assume that the only variable that a�ets reprodutive suess is the total aumulated timethat intruders spend in the territory (i.e., one intruder spending 20 time units in the territoryresults in the same derease in reprodutive suess as four intruders eah spending 5 timeunits). I model the entry of the other onspei�s (as opposed to the re-intruder) as a Poissonproess, where β is the rate of entry of intruders, and does not hange over time or with thenumber of intruders already in the territory (exept that no onspei� an intrude in theterritory if the predator is still present). It is shown in Appendix 3.A (p. 78) that the expetedtotal time that the other onspei�s aumulate is given by
∫ tr

0
β

(tr − s)2

2
ρ e−ρs ds =

β

ρ2
−

β

ρ2eρtr
−

βtr
ρ

+
βt2r
2

. (3.4)



613.3.3.2 Time spent by the re-intruderIn ontrast to the other onspei�s, the re-intruder is the one partiular individual that washased away at time 0. The reintruder an either attempt to reinvade the territory or not; if itattempts a reinvasion, the reintruder's attempted return time has a ertain probability densityfuntion (pdf). However, the reintruder an only reinvade suessfully if the resident is hidingand the predator has left the area. I show in Appendix 3.A (p. 78) that if the time of return tiis distributed aording to the pdf fT (ti) (and FT (ti) is the umulative distribution funtion)the expeted time that the reintruder spends in the territory (x) is given by
E[X|No attempted invasion by tp + th] =

p

1 − pFT (tp + th)

∫ tr

0
xfT (tp + th + tr − x) (1 − e−ρ(tr−x)) dx. (3.5)I evaluated this integral numerially.3.3.4 Parameter values and robustness of resultsThe range of values for the di�erent parameters is shown in Table 3.1 (p. 62). Changes inthe values of one or more parameters only lead to numerial di�erenes, but not to hanges inqualitative patterns (see also Disussion); for instane, notie how the di�erent panels withinFig. 3.2, 3.3, 3.4 (pp. 65, 66, 67) are saled versions of eah other. The only exeption to thisare very small values for the variane of reintruder's return time (see below). All results shownin the �gures orrespond to a probability of reintrusion (p) of 0.9; hanges in this parameteronly either inrease or derease the e�ets of the reintruder, but in most of the ases examinede�ets of a past reintrusion are observable with p = 0.4.For �xed reintrusion time I have arbitrarily set ti = 400. Choosing a di�erent value makesno di�erene, as the relevant variable is not ti (or its mean for the log-normal distribution), but

tip(= ti − tp), the time at whih the reintruder returns with respet to the predator attak. To



62Table 3.1: Main variables and parameters of the model.Symbol Meaning Range
th Time to hide (relative to initiation of predator attak) Optimisedvariable
tr Time to reemerge (relative to initiation of hiding) Optimisedvariable
tp Time to predator attak (relative to time when intruder ishased away) 0-7000
p Probability of reintruder's return 0.4-0.99
ti Time of reintruder's return (relative to time when intruderis hased away) 400 or ran-dom
µ For reintruder with log-normal return pdf: mean oflog(return time) Log(400)
σ For reintruder with log-normal return pdf: standard devia-tion of log(return time) 0.001-1
λ For reintruder with exponential return pdf: mean of the ex-ponential distribution 2-800
β Rate of intrusion of other onspei�s 0.00009-0.012
ρ Rate of predator leaving the area after resident hides; meantime to leave = 1/ρ. 0.005-0.05
I Initial territorial assets 0.1-4
c Rate of derease of reprodutive suess with time intrudersspend in territory 0.02-0.9Variables derived from the above
tip Time of reintruder's return relative to time of predator's at-tak(tip = ti − tp)
h Time of hiding (h = tp + th)
r Time of reemergene (r = tp + th + tr)examine the e�ets of variation in the intruder's behaviour, I have modelled return times usingtwo di�erent distributions, an exponential and a log-normal, and have generated additionalvariability in the reintruder's behaviour by modifying the parameters of these pdf's. With thelog-normal pdf, the �rst parameter (= the mean of the log (return time)) has been set equal to

log(400), to make it omparable to the �xed reintrusion time ase, and I have varied the seond



63parameter, the standard deviation of log(return time) (note that the mean of ti is not exatly400). For the exponential, I have hanged its mean, whih also hanges its variane (sine foran exponential distribution the variane is the square of the mean). Several examples of thepdf of return times are shown in Fig. 3.1.
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Figure 3.1: Examples of the probability density funtions (pdf's) used for the reintruder's returntime.
3.4 ResultsThe fous of this work is the e�et of a past reintrusion, whih an be evaluated omparing theoptimal values of th and tr with the optimal values for an idential situation without reintruder(i.e., when only other onspei�s an invade). Thus, I �rst examine the e�ets of havingonly other onspei�s on optimal th and tr. Next, I show the results when a reintruder isadded. Sine the most relevant results are those from a reintruder with stohasti behaviour, Ionentrate on those; the results for a reintruder with �xed return time are shown in Appendix3.B (p. 82).



643.4.1 E�ets of other onspei�sWhen there are no re-intruders, but only other onspei�s, nothing is gained by delaying hidingfrom an attaking predator. For �xed β (rate of intrusion of other onspei�s) and ρ (predator'srate of leaving the area), the only variable that determines the time that intruders spend inthe territory is time to reemerge (tr; see expression 3.4, p. 60), and delaying hiding (th > 0)only results in inreased mortality risk. Given a �xed loss in reprodutive suess aused byother onspei�s (i.e., for a �xed tr), this loss an be kept onstant keeping tr onstant, butsurvivorship maximised by hiding at 0. Thus, we annot �nd, for any tr, any th > 0 thatwill be better than th = 0, and hene the optimal option is to always hide at th = 0. (Forthe other onspei�s no information an be gained by delayed hiding, sine the probability ofinvasion of other onspei�s is independent of past events; this di�ers from the situation witha reintruder, where information an be gained about the probability of a future return �seebelow). In ontrast to time to hide, other onspei�s do in�uene time to reemerge. Inreasesin β and ρ derease t∗r (optimal time to reemerge): if the rate of intrusion is higher the residentought to reemerge sooner (at the expense of survivorship), and if the predator is likely to leavethe area sooner, the resident an reemerge sooner without inurring inreased predation risks.If intruders have a large depressing e�et on reprodutive suess (large c �ompare a vs. band  vs. d in Fig. 3.2, p. 65) or if initial assets (I) are small �ompare a vs.  and b vs. d inFig. 3.2�, the resident will reemerge sooner.
3.4.2 E�ets of the reintruderWe now add a reintruder and examine how optimal time to hide and optimal time to reemergehange relative to the optimal time to hide and time to reemerge when there are only otheronspei�s (previous setion).
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Figure 3.2: Optimal time to reemerge (tr) when there is no reintruder, as a funtion of rateof intrusion of other onspei�s (β), for di�erent values of predator's leaving rate (ρ), initialassets (I), and e�ets of intruder's time on reprodutive suess (c). The x-axis is in logarithmisale to failitate omparisons.3.4.2.1 Optimal time to reemergeOptimal time to reemerge (t∗r) as a funtion of time of predator attak (tp) is shown in Fig. 3.3 (p.66) and 3.4 (p. 67) for an intruder with log-normal and exponential return times, respetively.One major di�erene between the exponential and the log-normal ases is that in the log-normalase there is an initial derease in t∗r as the time between the end of the aggressive interation andthe predator's attak inreases. In other words, with a log-normal distribution of return timeswe an obtain a ounterintuitive intensi�ation of the e�ets of a past aggressive interation
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Figure 3.3: Optimal time to reemerge (t∗r) as a funtion of time to predator attak (tp), whentime to intruder's return (onditional on reintruder attempting return) is log-normally dis-tributed (with mean of log(return time) = 400). For explanation of other parameters see Table3.1 (p. 62).with time: t∗r dereases with inreasing tp for values of tp smaller than the maximum of the pdf(about 400). In addition the range of tp's that exhibit an intuitive wearing-o� of the e�ets ofa past aggressive interation (inrease in t∗r with inreasing tp) an be small ompared to the
tp's that exhibit ounterintuitive behaviour. In ontrast, if intruders' return time follows anexponential distribution (or, more generally, a pdf with maximum value at 0 and monotoniallydereasing thereafter), we annot observe a ounterintuitive intensi�ation of the e�ets of apast aggressive interation with inreasing time to predator attak: the plot for the exponential
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Figure 3.4: Optimal time to reemerge (t∗r) as a funtion of time to predator attak (tp), whentime to intruder's return (onditional on reintruder attempting return) is exponentially dis-tributed (with mean λ). For explanation of other parameters see Table 3.1 (p. 62).ase is like the plot for the log-normal ase starting at tp ≃ 400 (i.e., to the right of the maximumvalue of the pdf of the log-normal). The explanation of this pattern is the following: when themaximum of the pdf is some t > 0, as the time between tp and that t inreases (either beause
tp ≪ t or tp ≫ t) the risk of a reintrusion in the near future dereases. In other words, if thepredator attaks a long time before the maximum of that pdf, the resident need not worry abouta partiularly high risk of reintrusion for some time. Therefore, it is neessary to understand,at least qualitatively, the pattern of reintruder's return to make preditions about hanges inreemergene time with variation in time to predator attak.



68Inreasing β (e.g., ompare a) and ) in Fig. 3.3 and 3.4) dereases the e�ets of the rein-truder: the relative importane of the reintrusion beomes smaller as the number of otherintruders inreases, beause other onspei�s (and not the reintruder) are the major threat.Dereasing the probability of reintrusion also dereases the e�ets of the reintruder: the smallestpossible t∗r is larger, and t∗r reahes the plateau faster (i.e., at smaller tp). Likewise, inreasingthe speed at whih reprodutive suess dereases with intruders' time in the territory (i.e.,inreasing c) or dereasing initial assets (i.e.,dereasing I �e.g., ompare a) and b) in Fig.3.3 and 3.4) dereases the e�et of the reintruder: for any given β, faster loss of �tness withintrusion (or smaller initial reserves) dereases the maximum attainable di�erene in t∗r (as the
t∗r in the absene of the reintruder is already small beause the high rate of intrusion of otheronspei�s fores the resident to reemerge sooner); however, the relative hange (or, equiva-lently, the di�erene of the logarithms of time to reemerge) is sometimes larger and sometimessmaller with smaller I.The variane of the return time of the reintruder has a strong e�et on t∗r. If the variane issmall and the predator omes around the time when the pdf of the reintruder return is largest(e.g., 400; see Fig. 3.1a, σ = 0.05, p. 63) the probability of the reintruder returning in thenear future is very high, and thus the e�ets on t∗r are strong. If the predator omes longbefore that time, it is unlikely that the reintruder will return before the resident has alreadyreemerged to prevent intrusions from other onspei�s (e.g., in �g. 3.3a, p. 66, with σ = 400,at tp ≃ 200, t∗r = 70; thus, the resident is reemerging at around 270, but the reintruder isunlikely to ome long before 400). If the predator omes some time after the maximum of thepdf, it is unlikely that the reintruder will ever ome, given that it has not ome by that time. Inontrast, with high variane, the probability of the reintruder oming in any partiular intervalis smaller, but this probability is spread over a larger time period (e.g., Fig. 3.1, p. 63) and evenfor large tp's the probability is still high that the reintruder will ome, given that it has notome by that time. Thus, with larger varianes (i.e., less preditable reintruder), the e�ets ofthe reintruder in reemergene time an be observed for a larger range of tp. In summary, with



69small varianes e�ets of a past aggressive interation are more intense, but might be observableonly for a small range of tp's.3.4.2.2 Optimal time to hideWhen the reintruder has a stohasti reintrusion time, delaying hiding is never optimal, exeptfor extremely small varianes (e.g., Fig. 3.5) and low rate of intrusion of other intruders andonly over a very small range of times to predator attak. To make delaying hiding optimal, thederease in territorial osts and information gain has to be large enough to ompensate the fastinrease in the risk of mortality from delaying hiding. This an only be ahieved if (1) thereis almost ertainty about the reintruder's return (variane lose to zero � the estimate of theprobability of reintrusion is updated using Bayes theorem [eq. 3.A.2, p. 80℄ and thus with smallvarianes delaying hiding an provide a lot of information about the future probability of thereintruder's return) and (2) the loss of reprodutive suess from a reintruder has a major e�eton �tness (e.g., when the rate of intrusion of other onspei�s is very low and initial territorialassets are small).3.5 DisussionThis paper shows that risk of intrusion of onspei�s an have large e�ets on some ompo-nents of the antipredator strategy: inreased intrusion risk results in a derease in time untilreemergene from a refuge. When there is no threat from a reintruder but only risk of intrusionfrom other onspei�s, the optimal strategy (e.g., Fig. 3.2, p. 65) is to hide as soon as thepredator attaks (i.e., not to delay hiding) and to modify time to reemerge as a funtion ofthe threat of invasion (larger numbers of intruders result in shorter reemergene) and initialresoures (the higher the value of initial resoures, the later an animal an a�ord to reemerge,as predited from the asset-protetion priniple �Clark, 1994). The main fous of this paper
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Figure 3.5: Examples of optimal time to hide (t∗h), as a funtion of time to predator attak (tp),when time to intruder's return (onditional on reintruder attempting return) is log-normallydistributed (with mean of log(return time) = 400, β = 0.001, ρ = 0.05, c = 0.4, I = 0.5).are the e�ets of a past aggressive interation when intruders are persistent. In the preseneof a reintruder, as was the ase in the absene of a reintruder, the optimal strategy almostalways involves hiding as soon as the predator attaks . However, reemergene time an bestrongly a�eted by the possibility of a onspei� reintrusion. The extent of these e�ets willbe modi�ed by the time of the predator's attak and the behaviour of the reintruder (e.g., Fig.3.3, p. 66 and 3.4, p. 67). Timing of attak of the predator and behaviour of the reintruder playa key role beause the inrease in territorial osts of intrusion is a onsequene of a transientinrease in the probability of reintrusion. As this probability inreases, behaviour is modi�ed



71(earlier reemergene) at the expense of inreased mortality risk, but it eventually returns to thesame levels as in the absene of reintrusion.3.5.1 Why not to delay hidingFlight initiation behaviour (measured either as time to hide or approah or �ight distane)has been shown empirially to respond to variation in predation risk (e.g., Bauwens & Thoen,1981; Bulova, 1994; Cooper,1997; see review in Lima & Dill, 1990; Lima, 1998), but few studieshave examined the e�ets of non-predatory fators suh as inreased ost of �ight (Lima, 1998).Most evidene of delayed hiding with higher osts of hiding is limited to a few ases related toforaging osts of �ight (see Lima, 1998, p. 237; Ydenberg & Dill, 1986, pp. 237-239). Reentempirial work has doumented delayed hiding in mate guarding males (Cooper, 1997, 1999) andanimals involved in ongoing aggressive interations (Brik, 1998; Cooper, 1999; Díaz-Uriarte,1999, experiment 2; Jakobsson et al., 1995). In addition, the model of Ydenberg & Dill (1986)predits that time to initiate �ight should inrease with inreasing ost of �ight.However, delaying hiding is rarely optimal in this model, whih agrees with the empirialresults of Díaz-Uriarte (1999) where male Tropidurus hispidus do not inrease time to initiateesape if a predator attaks 5 min after an intruder is evited from their territory; the preditionsof this model, however, do not agree with the results of Díaz-Uriarte & Marler (in prep.) wherethere is also an inrease in the delay to hide. In this model, delaying hiding an a�et intrusionin two ways. First, delaying hiding prevents the invasion of both other onspei�s and thereintruder beause while the resident is out of the refuge the intruders annot suessfullyinvade the territory. Seond, delaying hiding serves to gain information about the reintruder'sprobability of return based upon the reintruder not having attempted to reinvade by the timethe resident goes into hiding (the probability of reintrusion is updated using Bayes theorem�see expression 3.A.2, p. 80; no information an be gained about the other onspei�s, as theprobability of invasion by other onspei�s is independent of past invasions). Information about



72the reintruder's probability of return is valuable if it an modify future behaviour (Stephens,1989; also Mangel, 1990), suh as reemergene time. If the resident hides with a new estimate ofthe probability of future reintrusion very lose to zero, time to reemerge ould be muh longer,therefore dereasing mortality at reemergene. Nevertheless, in most ases neither the dereasein intrusion osts nor the gain of information about the intruder's probability of return justifydelaying hiding. These result depend on the attak of the predator being generally a very fastevent, so that the small derease in intrusion osts and/or the added information about thereintruder's likely behaviour annot ompensate the fast inrease in mortality risk that resultsfrom delaying hiding.The partiular parameter values and funtions used in this model a�et the numerial resultsbut do not hange the qualitative onlusions. The main qualitative results only depend on,(1) that survivorship be a monotonially dereasing funtion of time to hide and (2) that therate of derease in survivorship with time to hide be faster than the rate of information gain(itself a funtion of the variane of reintruders' return). Both onditions are likely to hold inmost biologial systems.What, then, explains the di�erenes between the preditions of my model and those fromthe model of Ydenberg & Dill (1986) and the empirial �ndings of Brik (1998), Cooper (1999),Díaz-Uriarte (1999; experiment 2), Díaz-Uriarte & Marler (in prep.) and Jakobsson et al.(1995)? On the one hand, in Ydenberg & Dill's (1986) model there is always a ost to �eeingfrom predators (for example, loosing a very pro�table prey item); in my model, the ost doesnot arise from �eeing itself but from hiding (whih also explains why, in my model, when thereis no reintruder delaying hiding an never be optimal). On the other hand, all of the empirialevidene, exept for Díaz-Uriarte & Marler (in prep.), deals with animals atively engaged ina �ght. In those situations the animals are faing an atual intrusion, and not just risk of aprobable intrusion sometime in the future; when the animal is engaged in an ongoing �ght �eeingitself (and not just hiding time) has a ost, as in the model of Ydenberg & Dill (1986), and this



73ost ould be muh higher if the approahing predator is not an attaking one (Díaz-Uriarte,1999).Nevertheless, there are other osts of hiding soon suh as interrupting foraging (e.g., Yden-berg & Dill, 1986; Lima, 1998) and degrading information aquisition (interrupting sampling�e.g., Dall et al., 1999) that have not been onsidered in this model. Moreover, these ostsould be omparatively high if the approahing predator is not an attaking one (Díaz-Uriarte,1999; see also Lima & Dill, 1990), whereas in the present model the approahing predator wasalways attaking. Finally, delaying hiding when there is unertainty about the predator's in-tentions (attaking vs. non-attaking) ould atually provide information about the probabilitythat the approahing predator is an attaking one and thus modify, for example, reemergenetime. These e�ets are urrently under investigation. But the main onlusion from my modelregarding �ight behaviour is that the risk of a potential intrusion, per se, will very rarely justifydelaying hiding from an attaking predator. Interestingly, in the experiments in Díaz-Uriarte& Marler (in prep.) the predator's approah speed was about half of the predator's approahspeed in Díaz-Uriarte (1999), and thus makes more likely that these additional osts of hidingould be deteted. In summary, the di�erenes with the model of Ydenberg & Dill (1986) sug-gest that trade-o�s between predation and foraging ould be very di�erent from those betweenpredation and territorial defene. Whereas in the former it is interrupting foraging that is mostostly, in the latter osts arising from hiding and interruption of information aquisition ouldbe the most relevant.3.5.2 Using multiple responses to haraterise antipredator behaviour, andapplying and testing the modelThe above results have been obtained beause we have haraterised antipredator behaviourusing two variables, time to hide and time to reemerge, instead of a single one (suh as proportionof time hiding). As emphasised by Lima & Dill (1990), in the study of on�iting demands



74of antipredator behaviour it is neessary to identify the key behavioural deisions involved inpredator avoidane; this ontext spei�ity is a neessary step to guide further empirial workand generate testable preditions.The results of this paper also show that applying and extending this model requires a betterunderstanding of reintrusion patterns in nature, sine the re-invasion behaviour of the reintruderan have a large e�et on the detetability of e�ets of a past aggressive interation and the typeof hange of time to reemerge with variation in time to predator attak. Unfortunately, thereis no information about reintrusion patterns in nature. A pdf of return times with a maximumnot at zero reates two potential problems for empirial work. First, there will be a window oftimes to predator attak during whih inreasing the time between the end of the evition ofthe intruder and the predator attak results in a ounterintuitive inrease in the e�ets of thepast aggressive interation (as the time to reemerge dereases �Fig. 3.3, p. 66). Seond, andmore importantly, the largest e�ets will be deteted around the (generally unknown) maximumof the pdf, but might be negligible shortly after the intruder is evited (e.g., Fig. 3.3, p. 66).This is not a problem if the reintruders return as with an exponential distribution (or, moregenerally, a pdf with maximum value at 0 and monotonially dereasing thereafter); in thisase, the best way to detet an e�et of past aggressive interations is to expose the resident toa simulated predator attak shortly after the resident has evited a reintruder (Fig. 3.4, p. 67).An inrease in predation exposure following an aggressive enounter emphasises that a sim-ilar funtional explanation, adaptive response by a territorial resident to a transient inreasein the probability of intrusion, ould underlie di�erent behavioural phenomena: past aggressiveinterations are known to inrease the time invested in territorial vigilane (e.g., great tits:Ydenberg & Krebs, 1987; Kaelnik et al., 1981) and the frequeny of territorial displays (e.g.,the lizards Seloporus jarrovi and Urosaurus ornatus; Moore, 1987; Thompson & Moore, 1992),and in a wide range of taxa (e.g., Adamo & Hoy, 1995; Chase et al., 1994) past experienes ofvitory make winning future enounters more likely. In addition, the onsequenes of past ag-
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78Appendix 3.A: expeted aumulated time that intruders spendin the territory
3.A.1 Time spent by other onspei�s
If the presene of a predator does not a�et the entry of intruders, the expeted total timethat the other onspei�s aumulate within a territory in the absene of the territory owneris given by

E

[
∫ r

h

N(t) dt

]

=

∫ r

h

E [N(t)] dt =

∫ r

h

β(t − h) dt = β
(r − h)2

2
(3.A-1)where N(t) is the number of other onspei�s by time t, h is the time at whih the animalhides (i.e., tp + th), and r is the time at whih the animal reemerges (i.e., tp + th + tr); the �rstequal sign (interhange of order of integration and expetation) follows from Fubini's theorem(e.g., Williams, 1991, h. 8) and the seond results from diret substitution of the expetedvalue of a Poisson random variable. One intruders are present in the territory they no longerleave.Expression 3.A-1 needs to be modi�ed beause no intruder an enter the territory while thepredator is in the area; therefore, the starting time of the proess is not h, but a random variable,

z, whose pdf is the pdf of the time at whih the predator leaves the area (i.e., fZ(z) = ρe−ρ(z−h)).Then, using onditional expetation (E[Y ] = E[E[Y |Z]] =
∫

E[Y |Z = z]fZ(z) dz) the expetedtotal time that the other onspei�s aumulate is given by
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793.A.2 Time spent by the reintruderFirst, suppose that, onditional on the reintruder attempting a return, the reintruder returntime is �xed (i.e., the pdf of t is 1 for t = ti and 0 otherwise). De�ne tip = ti − tp as the time atwhih the intruder returns with respet to the predator attak. Sine the reintruder an onlyinvade suessfully if the resident is hiding and the predator is not present, the expeted timespent by the reintruder is given by
(r − ti)(1 − e−ρ(ti−(tp+th)))p = (tr + th + tpi)(1 − e−ρ(tip−th))p, (3.A-3)whenever th < tip < (tr + th), and 0 otherwise.If time when the reintruder attempts to return, ti, has a pdf fT (ti), then the expeted timethat the reintruder spends in the territory an be found as follows. The random variable ofinterest is not ti but the time that the reintruder spends in the territory, given by r− ti. De�nea random variable X that takes the value r− ti when the reintruder suessfully reinvades, and0 otherwise (i.e., if the reintruder never attempts to return, or if it attempts to return while theresident is hiding �between r and h� but is unsuessful beause the predator is present), so

0 ≤ x ≤ r − ti. We are interested in the expeted value of X onditional on the reintruder nothaving attempted a return by h = tp + th. The expetation an be written as
E[X|No attempted invasion by h] =

E[X|(No attempted invasion by h) ∩ (Attempted invasion)]

PAttempted invasion|No attempted invasion by h . (3.A-4)Eq. 3.A-4 omes from the relationship
E[X|A] = E[X|A ∩ B]P [B|A] + E[X|A ∩ Bc]P [Bc|A], (3.A-5)



80where X is a random variable and A and B are events or sets, ∩ denotes intersetion of events,and c denotes the omplement. To derive eq. 3.A-4 from eq. 3.A-5 note that X takes value 0when no attempted invasion, or
E[X|(No attempted invasion by h) ∩ (No attempted invasion)] = 0.To evaluate eq. 3.A-4 we will need

P{No invasion by h} = (1 − p) + p(1 − FT (h)) = 1 − pFT (h)where FT (t) is the umulative distribution funtion of time to reintrusion. Thus,
P{Attempted invasion|No attempted invasion by h} =

1 − P{No attempted invasion|No attempted invasion by h} =(from Bayes theorem) 1 −
1 − p

1 − pFT (h)
=

p(1 − FT (h))

1 − pFT (h)
. (3.A-6)We need to obtain the pdf f(X|(No attempted invasion by h)∩(Attempted invasion))(x) to ompute the ex-petation in (3.A-4). In what follows I only show the pdf for 0 < x ≤ r−h, beause when x = 0it does not ontribute to the expetation; in this interval fX(x) = fT (r − x) (e.g., Roussas,1997, pp. 215 & �.). Hene, for 0 < x ≤ r − h or, equivalently, 0 < x ≤ tr, and using thede�nition of onditional pdf (e.g., Roussas, 1997, pp. 93 & �.),

f(X|(No attempted invasion by h)∩(Attempted invasion))(x) =
pfT (r − x)

p(1 − FT (h))
P{No predator at r − x};(3.A-7)where

P{No predator at r − x} = 1 − e−ρ(r−x−h) = 1 − e−ρ(tr−x), (3.A-8)



81from expression 3.2 and sine the proess of the predator leaving starts at the time the residenthides (h). Finally, substituting (3.A-8) into (3.A-7), using (3.A.2) in (3.A-4), applying thede�nition of expetation to the random variable in (3.A-7), and simplifying and showing resultsin terms of th and tr, we obtain
E[X|No attempted invasion by tp+th] =

p

1 − pFT (tp + th)

∫ tr

0
xfT (tp + th + tr − x) (1 − e−ρ(tr−x)) dx. (3.A-9)In all the �gures shown in this paper, I evaluated this integral using numerial integration.



82Appendix 3.B: Results for reintruders with �xed reintrusion timeThis appendix shows the results for optimal time to hide and optimal time to reemerge whenthe reintruder has a �xed time of return. These results are similar to those that we an obtainfor a stohasti intruder with variane of return time almost zero. To make these resultsomparable to those of stohasti reintruders, I have set the time of return at 400. The maindi�erene between these results and those from a stohasti intruder are that, in this ase, wean appreiate the e�ets of the predator preluding the reintruder's return.3.B.1 Optimal time to reemergeFig. 3.6 (p. 83) shows optimal time to reemerge, t∗r, as a funtion of tp for di�erent ombinationsof β, ρ , I, and c when ti = 400. To explain the results I will refer to two points in Fig. 3.6, t1and t2 that divide the range of tp into three distint regions, and are the tp's that orrespond tothe minimum and maximum t∗r. A tp > 400 means that the predator is initiating its attak afterthe intruder is sheduled to ome and thus t∗r is the same as if there were no reintruder. If thereintruder omes shortly after the predator attaks (t1 < tp < 400) t∗r is large: it is very unlikelythat the reintruder will invade the territory (as that an only happen if the predator is no longerpresent), and thus the resident an reemerge late; for example, with dereasing ρ the predatoris likely to stay longer, whih results in larger t∗r at tp lose to 400 �see Fig. 3.6b vs. 3.6a. For
t2 < tp < t1, t∗r dereases linearly with tp: the resident is reemerging at ti (t∗r = tip = 400−tp) sothat the reintruder does not aumulate any time in the territory. For tp < t2, t∗r is not a�etedby hanges in tp: to prevent further inreases in territorial osts from the other onspei�s'intrusions the resident is reemerging before the reintruder is sheduled to ome, and t∗r is thesame as if there were no reintruder.Inreasing β inreases the number of onspei�s that an intrude per unit time, and de-reases the sensitivity of t∗r to hanges in tp, beause the e�et of the reintruder dereases
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Figure 3.6: Optimal time to reemerge (t∗r) as a funtion of time to predator attak (tp), whentime to reintruder's return (ti) is 400. Points t1 and t2 (panel ) divide the range of tp intothree regions: when t1 < tp < 400 t∗r inreases as tp inreases; for t2 < tp < t1 t∗r = 400− tp; for
tp < t2 the behaviour of the resident is insensitive to the past aggressive interation (t∗r doesnot depend on tp). Values of tp > 400 orrespond to the predator attaking after the reintruderis sheduled to ome, and thus t∗r is the same as in the absene of a reintruder (i.e., there areno e�ets of reintrusion).relative to other onspei�s. The largest possible di�erene in t∗r (between points t1 and t2) issmaller beause t2 is shifted to the right; in other words, as we inrease β the tp at whih theresident's behaviour is no longer a�eted by the reintruder is larger. Dereasing I also dereasessensitivity to the reintruder (Fig. 3.6a vs. 3.6) as does inreasing c (Fig. 3.6 vs. 3.6d): if initialassets are small or loss of reprodutive suess fast, the reprodutive suess that a residentan a�ord to loose to intrusion dereases; this auses the maximum t∗r to derease: t2 is shifted



84to the right and this is not ompensated by the small derease in t∗r at t1. However, hangesin I and c do not make the reintruder less important relative to the other onspei�s: theysimply magnify the e�et of any territorial losses. Finally, inreasing tp (i.e., staging a predatorattak a longer time after an intruder is hased away) will derease t∗r whenever t2 < tp < t1;this is ounterintuitive, beause the e�et of a past aggressive interation beomes stronger (t∗rsmaller ompared to a situation without reintruder) as the predator attaks a longer time afterthe intruder was hased away. The ause of this ounterintuitive result is di�erent from theounterintuitive result for a reintruder with log-normal return time shown in Fig. 3.3 (p. 66).Finally, the �intuitive� result of a wearing-o� of the e�ets of a past aggressive interation as tpinreases is only observed for 400 < tp < t1, but this region (400 < tp < t1) might be small.3.B.2 Optimal time to hideWith a reintruder that returns at a �xed time (ti), optimal time to hide, t∗h, an only taketwo values: 0 and tip (the time at whih reintruder attempts to return relative to predator'sattak). When th is 0, the resident avoids mortality risks from predation during the initialattak. When th = tip (i.e., delayed hiding) the resident prevents the reintruder from omingbak (as the reintruder an only ome bak if th < tip < (tr + th)). No other value of th an beoptimal; any value of th between 0 and tip exposes the resident to predation without preventingthe reintruder from returning, and values of th > tip result in inreases in mortality risk withrespet to th = tip with no further redution in territorial intrusion risk. Delaying hiding willalso allow the resident to reemerge later than if it had hid at 0 as the re-intruder is no longera threat and reemergene is only ditated by the rate of intrusion of other intruders.Fig. 3.7a (p. 85) shows t∗h as a funtion of time to predator attak (tp) when ti = 400 forthree di�erent β's. In every ase, when tp < 390 then tip > 10 and thus t∗h is always 0: delayinghiding in these ases would require delaying hiding for more than 10 time units, whih resultsin no survivorship. When tp > 400 the predator is attaking after the reintruder is sheduled
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Figure 3.7: Optimal time to hide, t∗h. a) E�ets of time to predator attak (tp) on t∗h whenthe reintruder is sheduled to ome at ti = 400. In the ase represented, for instane, when
β = 0.002, the resident will delay hiding if 396 < tp < 400 (see text for explanation), and thedelay will be equal to tip = 400 − ti; at any other values the resident will hide immediately(th = 0). b) Maximum tip (time or reintruder's return relative to the attak of the predator)at whih a resident will delay hiding, as a funtion of rate of intrusion of other onspei�s(β) for di�erent values of predator's leaving rate (ρ) and initial assets (I). The value shown inthe �gure is the largest tip for whih �tness is larger when th = tip ompared to th = 0. Forany intruder returning at a tip below the line, the resident's optimal behaviour will be to makemake th = tip; for any tip above the line the optimal th will be zero.to ome, so the reintruder is no longer a threat and thus t∗h is 0. For 390 < tp < 400 it mightbe optimal to delay hiding; in this region t∗h an be either 0 (no delayed hiding) or tip; thus,the line in Fig. 3.7a has a slope of -1 (t∗h = tip = 400 − tp). In general, it is more likely thatdelaying hiding will be optimal at small tip: here, delaying hiding does not represent a largeinrease in mortality, whereas for large tip the mortality risk of delaying hiding will be very



86large). However, delaying hiding, if at all, will only be observed in a small range of values of tp(when the predator attaks shortly before the reintruder is sheduled to ome). Fig. 3.7a and balso shows the e�ets of β on t∗h = tip. As the rate of intrusion of other onspei�s inreases,the relevane of the reintruder dereases, and thus it beomes less worthy of inreasing mortalityrisks. The optimal time to delay hiding depends also on the e�et of intruders on reprodutivesuess (c), the initial territorial assets (I), and the predator's behaviour (ρ) (Fig. 3.7b).



87Chapter 4
Cross-over trials in animal behaviour.I: Misuse, arry-over e�ets, and design
4.1 AbstratCross-over trials (experiments where eah experimental unit reeives two or more treatmentsthrough time) are frequently used in animal behaviour studies as they allow experiments withrelatively small numbers of subjets that nonetheless ahieve high statistial power by usingeah subjet as its own ontrol. However, ross-over trials are often analyzed inorretly inthe behavioural literature; the major problems are failure to onsider period and arry-overe�ets. In this hapter I �rst show these problems by using artiles published in twelve issuesof Animal Behaviour (July 1998 to June, 1999); 22 papers use rossover designs in at least oneexperiment, but beause of potentially inappropriate analyses the onlusions in eah of thesepapers are questionable. In addition, statistial textbooks frequently used by behaviouristseither do not mention ross-over designs or provide potentially misleading advie. In this paperI explain why the usual analyses of ross-over trials (paired t-tests or non-parametri analogues)are often inappropriate, then disuss the problems assoiated with arry-over e�ets, and �nallyreview the design of ross-over trials. If design and wash-out periods are given the appropriateonsideration, ross-over designs an be very powerful tools for behaviourists whenever obtainingnew subjets is more ostly than repeatedly testing the same individual, and thus ross-overdesigns an be useful in partiular for researhers working in the lab or in �eld enlosures where



88animals require lengthy training or habituation4.2 IntrodutionIn ross-over trials eah experimental unit reeives two or more treatments through time; inthe simplest ase of two treatments, the subjet is �rst given one of the treatments and thenrosses over to the other treatment (Jones and Kenward, 1989 �hereafter JK�; Ratkowsky et al.,1993 �hereafter REA�; Senn, 1993 a �hereafter SN�; Vonesh & Chinhilli, 1997). Thus, ross-over studies di�er from parallel studies where eah subjet is exposed to the same treatmentfor the duration of the experiment. In ross-over trials at least one key ovariate (treatment)hanges within-subjet over time. As the omparison of treatments is made within subjets,eah subjet ats as its own ontrol whih inreases statistial power to detet a treatmente�et (e.g., Crowder & Hand, 1990, p. 101; SN, pp. 201 & �.). This is partiularly importantwhen repeated testing of one subjet is muh simpler than reruitment of new subjets. Forthese reasons, ross-over trials are frequently used in behavioural experiments.However, ross-over trials are often analysed inappropriately, as if they were mathed pairsor "typial" repeated-measures designs, whih they are not. The main problems are, �rst, notaounting for period e�ets (whih leads to the inappropriate use of paired t-tests in the two-treatment, two-period ase) and, seond, failure to onsider arry-over e�ets. (A treatmente�et is the e�et of a treatment at the time of its appliation, whereas arry-over e�ets aree�ets of a treatment that persist after the end of the period, and a period is eah one of theoasions in whih a treatment is applied; see �Terminology�, p. 90.)For instane, in the twelve issues of Animal Behaviour from July, 1998 to June, 1999, thereare 22 artiles that use ross-over designs in at least one experiment. Eight of these papersuse variants of the two-treatment, two-period design (generally the typial 2x2 design); 17papers use designs for more than two treatments. Results are analysed with paired t-tests or



89Wiloxon's signed-rank test for 2 treatment designs, or with linear models (usually referred toas "repeated measures ANOVA" or in some ases mixed-e�ets models), and on a few oasionswith methods spei� for ategorial data. Only two studies expliitly onsider period e�ets(order of presentation), and one mentions that there are "no e�ets of order of presentation"(although the test is not explained); but no paper explains how potential arry-over e�ets aredealt with. Counterbalaning (eah treatment appears in eah period the same number of times)is used in 11 papers. When ounterbalaning is not used, order of presentation is "randomized."Thus, it seems that most authors believe that ounterbalaning or "randomization" of orderof presentation, per se, will take are of any other nuisanes (periods and arry-overs); but,as we will see, this is not true. Authors seem unaware that arry-over e�ets an bias theironlusions. The pratial onsequenes of the analyses used in these papers are that: a) ifthere are arry-over e�ets, all reported results ould be biased; b) even in the absene of arry-over e�ets, in the studies that do not use ounterbalaning the estimates of treatment e�etsare biased if there are period e�ets; ) in studies that use ounterbalaning, the estimates ofthe variane of treatment e�ets are overestimated if there are period e�ets. Therefore, theonlusions reahed in every one of these papers are questionable: the lak of e�ets reported insome studies ould be the onsequene of in�ated varianes, and the signi�ant e�ets reportedin other experiments ould be the result of either period or arry-over e�ets.Statistis textbooks used by behaviourists suh as Colgan (1978), Lehner (1979), Bart et al.(1998), Bailey (1995), Campbell (1989), and Sokal & Rohlf (1995) do not mention ross-overdesigns. Other texts provide potentially misleading advie; Martin and Bateson (1993, p. 29-30) apparently would use a paired test to analyse a 2x2 design; Zar (1996, p. 259-263) analysesa ross-over design, and refers to arry-over, but he fails to mention that period should beinorporated in the analyses, and seems to imply that ounterbalaning, per se, an eliminateproblems from arry-over e�ets; Edgington (1995) suggests ounterbalaning (pp. 114-117)to prevent undesired e�ets from order of presentation; Zolman (1993), although expliitlymentions ross-over designs and disusses arry-over e�ets (pp. 59-63), apparently suggests



90that a paired t-test is appropriate for a 2x2 design (p. 160).The 22 examples from one year of Animal Behaviour show that ross-overs, a powerfuland widespread type of design, are often analysed inappropriately; and the textbook examplesindiate that information on the appropriate design and analysis of ross-over trials is notaessible to animal behaviour researhers. Thus, the main objetive of this paper is to makeanimal behaviour researhers (and reviewers) aware of the most important pitfalls in the designand analysis of ross-over trials. I �rst explain why the usual analyses of ross-over trials inanimal behaviour researh are inappropriate, then I disuss the problems of arry-over e�ets,next I review the design of ross-over trials, and I onlude with a disussion on when touse ross-over designs in behavioural eology experiments. In a di�erent paper (Díaz-Uriarte,in review �next hapter�; hereafter DU2) I review the statistial methods available for theanalysis of data from ross-over experiments in animal behaviour researh.
4.3 TerminologyBefore we an understand the problems of some of the analyses of ross-over trials, we need tode�ne a few terms. A diret treatment or simply treatment e�et is the e�et of a treatmentat the time of its appliation. A period is eah one of the oasions in whih a treatment isapplied. Carry-over e�ets are e�ets of a treatment that persist after the end of the treatmentperiod; in other words, the response to a urrent treatment is a�eted by what treatment wasapplied in a previous period. A sequene is the order in whih the within-individual treatmentsare applied. Designs will be referred to using sequenes, suh as ABB,BAA, whih means thatanimals assigned to the sequene ABB are �rst given treatment A (1st period), then B (2ndperiod), then B (3rd period), and animals assigned to the BAA sequene are �rst given B, thenA, then A (1st, 2nd, and 3rd periods, respetively). Designs are examined in detail later.



914.4 Example of the �usual� analyses and their problemsThe 2x2 ross-over design (the design with sequenes AB,BA) is frequently analysed using apaired t-test; this is equivalent to subtrating the response value under treatment B from theresponse value under treatment A for eah individual and testing whether the mean is signif-iantly di�erent from 0 with a one sample t-test. However, in many behavioural experimentsperiod has an e�et: whether a response is measured on the �rst or seond oasion, per se, willa�et the value of the response (e.g., through habituation). With period e�ets the analysisabove is inappropriate for two reasons (SN, p. 38; also Shneider, 1983). First, if there are un-equal numbers of subjets in eah sequene, the test and the estimate of treatment e�ets willbe biased. (Bias means that the expeted value of the estimator is not equal to the parameterwe are trying to estimate; bias does not derease with inreasing sample size). Seond, evenif there are equal numbers of subjets in eah sequene, we lose power: period is a systematitrend, but by lumping together animals from both sequenes, we are asribing this systemativariation to the random omponent (the error term) and the standard errors of our estimateswill be in�ated. This seond problem is similar to ignoring the e�ets of bloking (a knownsoure of variation).To better understand these problems it is onvenient to write down an expliit expressionfor the statistial model (e.g. JK):
yijk = µ + sik + πj + τd[i,j] + eijkwhere µ is the interept, πj is the period e�et of period j =1,2, τd[i,j] is the diret treatmente�et of the treatment given in period j of sequene i, sik is the random subjet e�et of subjetk in sequene i, and eijk is the random error for subjet k in period j in sequene i (for themoment we ignore arry-over e�ets). From that model, the �xed e�ets for eah period andsequene for a 2x2 design are shown in Table 4.1 (p. 92).



92Table 4.1: Fixed-e�ets for the 2x2 design. In this table, arry-over e�ets have not beeninluded; inluding them would result in the �xed e�ets for period 2 being µ + π2 + τ2 + λ1and µ + π2 + τ1 + λ2 , in sequenes AB and BA respetively.Sequene group Period 1 Period 2AB µ + π1 + τ1 µ + π2 + τ2BA µ + π1 + τ2 µ + π2 + τ1The expeted value of the di�erene A-B for animals from sequene AB (dABAB) is (τ1 −

τ2)+(π1−π2), and the expeted value of the di�erene A-B for animals in sequene BA (dABBA)is (τ1 − τ2) + (π2 − π1). The paired t-test is the same as testing if the set of all dABAB and
dABBA are entered around zero, using a one-sample t-test. If there are more animals in ABthan in BA, our estimate of treatment e�ets (τ1 − τ2) will be biased by a fator proportionalto (π1 −π2); when the sample sizes of both sequenes are the same, there will be no bias in theestimate of the treatment e�et, but the error term will be in�ated by a term proportional to
(π1 − π2)

2. Thus, a paired test results in biased estimates of treatment e�ets and/or in�atedvariane estimates; ounterbalaning, per se, does not result in a orret analysis, ontrary towhat is sometimes believed.To prevent these problems, we should use the Hills-Armitage approah, illustrated in Table4.2 (p. 93) and desribed in more detail in JK (p. 23-28), SN (p. 42-44), and Crowder & Hand(1990, p. 101). We take period di�erenes (subtrat period 2 from period 1) for both sequenes,yielding d12AB and d12BA for animals from sequenes AB and BA respetively. The expetedvalues of these di�erenes are: E(d12AB) = (τ1−τ2)+(π1−π2), E(d12BA) = (τ2−τ1)+(π1−π2).We an test for treatment di�erenes omparing the means of d12AB and d12BA (d12AB and
d12BA) between the two sequenes (e.g., a two-sample t-test). De�ne τ̂ = 0.5(d12AB − d12BA);its expeted value is (τ1 − τ2) (so there is no bias) and the variane ontains only a term forthe within-individual errors (see expression in JK, p. 26). In other words, to test for treatmentdi�erenes we ompute the mean between the �rst and the seond period for eah individual,and then we use a two-sample t-test to ompare these values between the two sequenes. This



93Table 4.2: Simulated data (olumns three and four) for a 2x2 trial. A ommon (inorret)analysis of treatment e�ets uses a paired t-test, whih is the same as testing if the rossoverdi�erenes are entered around zero. The Hills-Armitage approah ompares period di�erenesbetween the two sequene groups.Sequene Subjet Period 1 Period 2 Period Crossoverdi�erenes di�erenes
d12AB dABABAB 1 16.5 11.1 5.4 5.4AB 2 14.9 9.2 5.7 5.7AB 3 14.2 6.9 7.3 7.3AB 4 20.6 13.8 6.8 6.8AB 5 18.2 12.8 5.4 5.4
d12BA dABBABA 6 15.0 13.3 1.7 -1.7BA 7 13.9 9.8 4.1 -4.1BA 8 9.8 6.5 3.3 -3.3BA 9 16.8 14.8 2.0 -2.0BA 10 14.9 12.0 2.9 -2.9method of testing for treatment e�ets is also alled the CROS test.To test for period e�ets, we ompute ross-over di�erenes (di�erene between periods1 and 2 for subjets in AB, and di�erene between periods 2 and 1 for subjets in BA �equivalent to omputing di�erenes between A and B for all subjets), and use a two-samplet-test omparing these di�erenes between the two sequenes. Finally, to test for inequalityof arry-over e�ets we ompare the sum of the values in the two periods between the twosequenes (see JK, p. 24-25); note that we annot test for absene of arry-over e�ets, onlyinequality or di�erential arry-over e�ets (see next setion), and in the 2x2 designs di�erentialarry-over is onfounded with sequene e�ets. A nonparametri version of these tests was �rstdesribed by Koh (1972) and is explained in JK (p. 51 and �.) (but see Taulbee, 1982, fororretions of expressions(4) and (6) in Koh, 1972 and JK, p. 27 and 56).As an example, Table 4.2 shows a set of data from an AB,BA trial (these are simulated data,



94Table 4.3: ANOVA table for the analysis of the data in Table 4.2 using split-plot (parameteri-zation as in JK, exept no arry-over inluded).Soure d.f. SS MS F p-valueBetween-subjets 9 130Within-subjets stratumPeriod (adjusted for Treatment) 1 99.5 99.5 231.7 0.0001Treatment (adjusted for Period) 1 13.8 13.8 32.1 0.0001Within-subjets residuals 8 3.4 0.4Total 19 246.7from a model with main e�ets of period and treatment and normally distributed subjet andrandom errors). Using the paired t-test approah to test for treatment di�erenes we obtain
t9=1.098, p = 0.3. Using the Hills-Armitage approah we obtain t8=5.666, p =0.0005 (with theHills-Armitage approah we have one less d.f. as this is a two-sample t-test). In this examplethe paired t-test fails beause there are period e�ets, whereas the Hills-Armitage approah hasno problems with the period e�ets.We an also analyse these data using a split-plot ANOVA (Table 4.3; see JK, p. 30-33).The �rst stratum is individual; the seond stratum is within-individual and is used for the testsof interest (treatment e�ets). In this ANOVA, we use as explanatory or independent variablestreatment and period, and test for treatment e�ets after having entered period in the model(and for period after entering treatment); these are alled marginal tests. In this ANOVAwe have adjusted for the e�ets of period by inorporating period into the model, and thuswe obtain the exat same results as the Hills-Armitage approah (F = 32.1 = 5.6662 = t2).(However, an ANOVA that did not inlude period would yield the same inorret results as thepaired t-test).The problem of the paired omparison is the same regardless of whether we use a t-test,a nonparametri test, or a randomization test. The ause of the problem is not the type ofstatisti but failure to aount for the e�et of period. Unless there is strong evidene to the



95ontrary, in most behavioural experiments we should assume that period an a�et the results;in this ase, a paired test should not be used beause it is inappropriate, regardless of whetheror not ounterbalaning is used and whether or not there are the same number of subjets ineah sequene. Problems with period e�ets are not limited to two-treatment ross-over designs,but a�et all other designs as well (e.g., three treatment designs).4.5 Carry-over e�etsA potential problem of ross-over designs are period*treatment interations (the e�et of atreatment is not onstant over the di�erent periods). One type of period*treatment interationis arry-over e�et: the response to a treatment is a�eted by what treatment was applied inprevious period(s), so that past treatments have e�ets that last, or arry-over, to the followingperiods. In the 2x2 design, but not neessarily in designs with more than two treatments orperiods, arry-over and any other treatment*period interations are ompletely onfounded.Carry-over e�ets an bias the estimates of treatment e�ets and a�et designs with anynumber of periods and treatments. In most designs (inluding the 2x2), the ause of theproblem is not arry-over per se, but di�erential arry-over e�ets, i.e., the arry-over fromdi�erent treatments being di�erent. For example, in Table 4.1 (p. 92), if there are di�erentialarry-over e�ets, our estimate of treatment e�ets using the Hills-Armitage approah will bebiased by λ1−λ2; if there are equal arry-over they will be indistinguishable from period e�ets,and the Hills-Armitage approah will be unbiased. (Using a paired t-test, di�erential arry-overe�ets will result in bias, even if there are no period e�ets).Contrary to what is sometimes believed, ounterbalaning does not eliminate bias aused byarry-over e�ets, regardless of the number of treatments (e.g., Abeyasekera & Curnow, 1984).Thus, there are two strategies for dealing with arry-over e�ets: a) minimise the hanesthat they an happen; b) inlude them expliitly in the statistial model. Whih one of these



96approahes is taken will a�et both the design of the experiment and the analysis of the data.For the 2x2 design, there has been onsiderable debate on how to deal with arry-overe�ets. In the two-stage approah one �rst tests for arry-over e�ets and if no arry-over isdeteted one then tests for treatment e�ets with the CROS test (see p. 93); if arry-over isdeteted only the �rst period is used and one tests for treatment e�ets with the PAR test (asif we were dealing with a parallel groups design). The problem is that the results from the two-stage approah are either the same as for CROS or have an unknown but possibly very largebias, as the results from the PAR test and the test for arry-over e�ets are highly orrelated(SN, p. 52-54; Grieve & Senn, 1998). This suggests that the two-stage approah should not beused. On the other hand, it is debatable if we an trust the results of the CROS test without�rst testing for arry-over (Jones & Wang, 1998). Tudor & Koh (1994; also Koh, 1998) haveproposed a three-stage proedure; it is not known if this three stage proedure performs muhbetter than the two-stage one.With more than two periods, by making some assumptions it is possible to eliminate theproblems from arry-over e�ets by inluding arry-over e�ets in the statistial model. Forexample, with 1st order arry-over e�ets, some designs (strongly-balaned designs; see Tables4.4, p. 100 and 4.5, p. 101) result in estimators of treatment e�ets that are not a�eted bythe presene of arry-over e�ets. However, the assumptions that allow us to inlude arry-over in the statistial model e�etively might be unrealisti. One ommon assumption is theabsene of seond-order arry-over (i.e., e�ets that arry-over two periods after the treatmentwas applied); lak of seond-order arry-over is frequently justi�ed arguing that seond-orderarry-over e�ets are unlikely if there are no �rst-order arry-over e�ets. A seond ommonassumption is the absene of arry-over*treatment interations; arry-over by treatment in-terations our, for instane, when a treatment an arry-over into other treatments but itannot arry-over into itself or when the e�et of arry-over depends on the treatment intowhih it arries over. Depending on the underlying biologial phenomena these might either be



97reasonable approximations or ompletely inappropriate assumptions.Senn (SN, h. 10) disussed several reasons why models with arry-over e�ets are of nouse, emphasising that many of the above assumptions are unrealisti. He shows that arry-overadjusted estimates an be even more biased than estimates unadjusted for arry-over. Thus,Senn (SN; e.g., p. 14-15; h. 10) advoates using su�iently long times in between appliationof treatments (wash-out periods) so that arry-over e�ets are very unlikely, and analysing thedata without ever attempting to adjust for arry-over e�ets. The pratitioner, however, shouldbe aware that the results are onditional on the assumption of no arry-over e�ets. Moreover,in many studies (e.g., omparison of a ontrol with an ative treatment) if arry-over is presentbut not aounted for it will tend to underestimate the treatment di�erene (Jones & Lewis,1995; SN, p. 102). In other words, arry-over will result in a derease in power but not aninrease in the probability of rejeting the null hypothesis when it is true (Type I error rate).In ontrast to Senn's approah, there is a large statistial literature that models arry-overe�ets (e.g., JK, REA) and some authors strongly advoate always inluding arry-over e�ets(e.g., Abeyasekera & Curnow, 1984).Unfortunately, in many behavioural eology studies not enough information is available todetermine what is a long enough wash-out period. A pratial solution might be as follows:�rst, design studies so that arry-over e�ets are unlikely. The experimenter's attitude towardsarry-over e�ets should be expliit. Seond, design experiments so that arry-over e�ets anbe inluded in the statistial model, (modelling arry-over e�et in the most reasonable way).If arry-over turns out to be present, a design that made a provision for arry-over would makeit possible to salvage the experiment, and would indiate that future experiments might needto inrease the wash-out period.Moreover, in some studies presene of arry-over e�ets after what was onsidered a suf-�iently long wash-out period ould reveal a phenomenon of interest in its own right, sine aarry-over e�et would indiate that a past experiene is muh longer lasting than expeted (e.g.,



98e�ets of prior defeats in aggressive enounters that a�et �ght performane more than 24 hafter the defeat). Finally, in some instanes we might ombine ross-over designs with between-subjet designs (e.g., Díaz-Uriarte & Marler, in prep.); an interation between arry-over andbetween-subjets treatment might indiate a potentially interesting biologial phenomenon. Forinstane, we might examine simultaneously the e�et of hormonal treatment (a between-subjettreatment) and e�ets of presentation of a female vs. a ontrol (using a ross-over trial). Ina study like this, an interation between arry-over and hormone treatment would provideevidene that hormonal treatment has a�eted how long-lasting the presentation of a female is.4.6 Design of ross-over trialsHere I disuss the main designs that ould be useful in behavioural studies; more details areprovided in JK, SN, and REA. I will only examine designs that onsider period e�ets plausible.To maximise power, subjets should be alloated to treatments so that there are equal numbersof subjets for eah sequene (and this restrition should be re�eted when using randomizationtests).During the design phase, it is essential to understand how the data will be analysed. Forexample, some nonparametri methods for more than two treatments require that the designsbe of a spei� kind or that alloation of subjets be done in a partiular way; some othermethods only work with large sample sizes. These requirements might prompt one to eitherhange the design, to try to alloate more subjets or alloate subjets in di�erent ways, or tomeasure di�erent response variables.4.6.1 Designs for two-treatment trials.The most ommon ross-over design is the AB,BA design. As we have seen, this design isproblemati in the absene of information about arry-over e�ets. Even when arry-over e�ets



99are not present designs with more than two periods an be preferable as they lead to estimatorsof treatment e�ets with smaller variane, and therefore inrease power (e.g., the ABB,BAAdesign has a variane for the estimate of treatment e�ets whih is 19% of that from AB,BA�provided we use the same number of subjets, alloated in equal numbers to eah sequene).Table 4.4 (p. 100) shows three two-treatment designs, and some of their basi propertieswhih a�et the degree of aliasing (aliasing refers to the presene, in the design matrix, ofovariates whih are linear ombinations of other ovariates; tehnially, it refers to the amountof overlap between the subspaes de�ned by the ovariates; MCullagh & Nelder, 1989, p. 61-68). The onsequene of aliasing is that we annot obtain separate estimates of eah parameter.Aliasing is a ommon problem in ross-over designs; the orrelation between parameters is anindiation of aliasing, and is listed for many designs in JK (and an also be obtained by matrixoperations from the design matrix; see, e.g., REA). For instane, in the design ABB,BAAthe orrelation between the estimate of treatment and arry-over e�et is zero, and thus theestimate of treatment e�ets is the same in a model with or without arry-over e�ets, whihis a good quality if the statistial model inludes arry-over e�ets.We an lassify two-treatment designs by the number of sequenes and the number ofperiods. Designs di�er in the variane of estimated treatment e�ets (tabulated in JK formany designs). In general, the more periods the smaller the variane, but when sequenes withmany periods are used it is more likely that there will be missing data for later periods; thus,designs with more than 3 or 4 periods are not very advisable. Also, some designs are less a�etedby having to end a trial before it was expeted: if one uses a design suh as ABBA,BAAB andannot ollet data from the last period one is left with ABB,BAA whih is a good design (inontrast with eliminating the last period from AAAB,BBBA). When only two periods an beused the AA,BB,AB,BA design (Balaam's design for two treatments) an minimise problemsfrom arry-over e�ets; however, this design might be a worse hoie than simply ensuring along enough wash-out period and using AB,BA.



100Table 4.4: Some ross-over designs for two treatments(see JK; de�nitions from Vonesh & Chin-hilli, 1997 are slightly di�erent from those in Laska et al., 1983 and JK).Design Uniformwithinsequenes1 Uniformwithinperiods2 Balaned3 Stronglybalaned4

Variane of theestimator oftreatment e�ets5 Variane of theestimator oftreatment e�etswhen arry-over e�ets arepresent5ABB,BAA No Yes Yes Yes 0.375 0.375ABBA,BAAB Yes Yes Yes No 0.250 0.275ABBA,BAAB,AABB,BBAA Yes Yes Yes Yes 0.250 0.250
1A design is uniform within sequenes if eah treatment appears the same number of times within eahsequene;sequene e�ets are not aliased with treatment e�ets.
2A design is uniform within periods if eah treatment appears the same number of times within eah period;period e�ets are then not aliased with treatment e�ets.
3A design is balaned if eah treatment preedes eah other treatment the same number of times; in this ase,arry-over e�ets are aliased with treatment e�ets. A balaned design, as de�ned in JK, is one that is balaned(as in this table), uniform within sequenes �atually, eah subjet reeives eah treatment only one� anduniform within periods, and with equal number of subjets per sequene.
4A design is strongly balaned (or ompletely balaned) if eah treatment preedes eah other treatment, in-luding itself, the same number of times; in this ase, arry-over e�ets are not aliased with treatment e�ets.
5Expressed in multiples of (σ2/Total number of subjets), assuming equal numbers of subjets alloated to eahsequene.Designs omposed of many sequenes will be more ompliated to use, in partiular withlimited sample sizes, as one will need sample sizes whih are integer multiples of the numberof sequenes (to have the largest power). This is more problemati when one uses bloking orbetween-subjet treatments (as one usually will want to use the omplete design �i.e., all thesequenes� in eah blok or between-subjet treatment). Designs omposed of dual sequenes(i.e., pairs of sequenes where the seond sequene is obtained by interhanging the treatmentlabels A and B of the �rst sequene) allow one to use simple and robust analysis based onwithin-individual omparisons (see JK, SN; also DU2). The designs in Table 4.4 (p. 100) areomposed of dual sequenes and are among the most useful for estimating treatment e�ets



101Table 4.5: Examples of ross-over designs for four treatments; a) Williams design; b) for everypair of treatments two sequenes an be found where the treatments appear in interhangedperiods (e.g., in sequene 1, A is in the 1st period and D in the 2nd period, whereas in sequene4 the positions of A and D are reversed.a)Sequene Period1 2 3 41 A D B C2 B A C D3 C B D A4 D C A B
b)Sequene Period1 2 3 41 A D B C2 B C A D3 C B D A4 D A C Band also perform well under di�erent within-individual orrelation strutures (JK; Matthews,1990).4.6.2 Designs for more than two treatmentsWith more than two treatments we an distinguish between variane balaned (all pairwisedi�erenes between treatments are estimated with the same preision) and partially balaneddesigns (the variane of the omparison between two treatments depends on whih two treat-ments are ompared). Partially balaned designs might be the best hoie when there are severalexperimental treatments and one ontrol and we are most interested in minimising the varianeof ontrasts between eah experimental treatment and the ontrol. We an also di�erentiatebetween omplete and inomplete blok designs (e.g., SN, p. 163 and �.; JK, p. 199 and �.); inthe latter the number of treatments is larger than the number of periods (so eah individual isnot subjet to all the treatments). Inomplete blok designs are partiularly useful with largenumbers of treatments; however, these are muh more di�ult to design and analyse, and thusare of limited interest in animal behaviour studies.If period an have an e�et (as we generally assume), designs should be uniform withinperiods (see Table 4.4, p. 100, for explanation). Designs uniform within periods an be based



102on Latin squares (brie�y, suppose we arrange our design as a square, with n rows and n olumns;then, in a Latin square we an apply n treatments, and ensure that eah treament is appliedone, and only one, in eah row and olumn; for ross-over designs, the rows represent sequenesand the olumns represent periods). Williams designs (e.g., Table 4.5a) are also balaned (withrespet to arry-over; see Table 4.4). Under ertain assumptions, we an minimise problemsfrom arry-over e�ets by using extra-period designs. For example, we an use a Williamsdesigns to whih we add a period so that the last treatment is equal to the previous one (e.g., inTable 4.5, the �rst sequene would be ADBCC), and we obtain a strongly balaned design (seeTable 4.4, p. 100). However Williams and strongly-balaned designs might not be partiularlyuseful if arry-over is not an issue. Other designs based on Latin squares (e.g., Table 4.5b)have the property that, for every pair of treatments two sequenes an be found where thetreatments appear in interhanged periods (SN, p. 122 and 123); this property allows us touse some nonparametri and multivariate analyses (see DU2). Disussion of designs for threeor more treatments an be found in SN (h. 5, 9, 10), JK (h. 5), and REA (h. 5 and 6).In general, designs for more than four treatments will require sample sizes larger than thoseavailable in most behavioural studies.The assignment of subjets to sequenes (inluding bloking), and the eletion of the numberof squares, are disussed in SN (p. 123 & 209-210) and JK (p. 196-197; 198-199). In a threetreatment trial, we an either use one or the two Latin squares (if arry-over e�ets are inludedin the model, we will use the two sets of Latin squares). For four treatments, either severalsquares or a single one an be used; the latter is generally simpler and will be less a�eted byloss of subjets.Finally, the optimality of the designs disussed above depends on assumptions that mightbe inappropriate in some ases (e.g., when we expets treatment*arry-over interation). It ispossible to onstrut optimal ross-over designs tailored to the partiular assumptions of ourmodel (see Donev, 1998; Jones & Donev, 1996), and also use a sequential approah to trial



103design, so that assumptions an be inorporated as information beomes available.4.6.3 Between-subjets designs and baseline dataCross-over designs an be used in experiments that also inlude between-subjet treatments(e.g., omparing the e�et of female presene/absene in a ross-over trial, in whih di�erentindividuals have been assigned to di�erent hormonal manipulation treatments). Inlusion ofthese between-subjet fators in the analyses is reviewed in DU-2.The use of baseline data (data olleted before treatment(s) is(are) applied) an be found inJK and SN (see also Tsai & Patel (1996) for non-parametri analysis of a 2x2 design). Baselinedata an inrease the sensitivity of tests for treatment*period interations and between-subjettreatments; however, baseline data do not inrease sensitivity of tests of diret treatment e�ets,and thus are unlikely to be useful in most behavioural studies.
4.7 ConlusionsCross-over designs an result in an inrease in power and redue the number of animals neededin a study, whih is partiularly important if there are ethial onerns or we are working withsmall and/or threatened populations. However, the analysis of ross-over trials tends to be moreompliated than the analysis of parallel trials, and the potential for aliasing of e�ets in ross-over designs is larger; in addition, ross-over trials require that subjets be used repeatedly.Thus, eletion of ross-over designs vs. parallel trials will have to onsider how ostly it isto obtain new subjets vs. how ostly it is to obtain repeated measures of the same subjet.Additional (but rarely available) information on within- vs. among-individual variane wouldallow more informed hoies between ross-over and parallel group designs (see details in SN,h. 9).



104In many studies onduted in the lab or in �eld enlosures that require lengthy trainingor habituation of animals, ross-over trials are probably good hoies (if not the only option).In some �eld studies reloating subjets might be too time onsuming ompared to �ndingnew subjets, whereas other �eld studies use individually-marked animals that an be reloatedeasily. However, even when subjets are easy to reloate, ross-over designs might be di�ultto use in �eld onditions: the assignment of subjets to sequenes will have been done beforethe animals are atually found on a partiular day, and for period to have the same meaningaross subjets, the time interval between periods should be omparable among animals. Theseonditions might impose too many onstraints on whih partiular animals need to be foundon a partiular day, and ould make ross-over designs less attrative.The type of response will also a�et the design of hoie (see DU-2: next hapter). Thus,during the design stages (i.e., before any data have been gathered) it is very important todeide upon and understand the types of analyses that will be used; this might show thatertain analyses are not possible and ould prompt a hange in the design. It is too risky toassume that any design and type of data an be analysed statistially.In summary, this paper has argued that: a) a large number of designs is available forbehavioural studies; designs omposed of dual sequenes are usually preferable, and even whendealing with two treatments we might not want to limit ourselves to the 2x2 design (see Table4.4, p. 100); b) we will (virtually) always have to inlude period in our statistial analyses; )we need to think about arry-over e�ets and what onstitutes an appropriate wash-out period;how we are dealing with period and arry-over e�ets should be made expliit.4.8 AknowledgementsC. Lázaro-Perea provided advie, disussion, and omments on the ms. A. R. Ives, B. Jones,J. K. Lindsey, C. A. Marler, C. T. Snowdon and B. C. Trainor provided omments on the
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107Chapter 5
Cross-over trials in animal behaviour.II: Analysis and plotting
5.1 AbstratCross-over trials are frequently used in animal behaviour experiments but are often analysedinorretly (see previous hapter). In this paper I review methods of analysis of ross-overtrials in the ontext of animal behaviour experiments. I group methods of analysis aordingto the type of response variable: non-parametri and robust methods for metri responses,parametri methods for metri responses �linear mixed-e�ets models�, models for ategori-al responses both non-parametri and parametri �extensions of generalized linear models�,ensored observations �survival analysis�, and multivariate responses. Within-individual on-trasts are explained in detail early on, as they are the basis of many di�erent methods, fromnon-parametri to multivariate and survival-based models, and they o�er a useful framework forextending the analysis of data from ross-over trials to situations where robust methods mightbe needed (e.g., permutation tests of ensored multivariate responses). In this hapter I alsodisuss some types of plot that are spei� and partiularly useful for ross-over trials. Beforeonduting a study, it is of paramount importane to onsider both the design and analysis,sine the type of response an a�et the hoie of design. Moreover, some types of responsesan be very di�ult to analyse, speially with small sample sizes, and an result in very lowstatistial power (in partiular ategorial and survival data), and might prompt us to redesign



108the experiment or onsider measuring other responses.5.2 IntrodutionCross-over trials are frequently used in animal behaviour (see Díaz-Uriarte, in review �previoushapter; hereafter DU-1) as they allow us to ondut experiments with relatively small numbersof subjets that nonetheless ahieve high statistial power by using eah subjet as its ownontrol (Jones & Kenward, 1989 �hereafter JK; Senn, 1993a �hereafter SN). Thus, ross-over designs are powerful tools when repeated testing of one subjet is muh simpler thanreruitment of new subjets. However, ross-over experiments in animal behaviour studiesare usually analysed inorretly, as if they were mathed pairs or "typial� repeated-measuresdesigns, whih they are not (see DU-1 for details and examples). The main problems arefailure to aount for period and arry-over e�ets. The widespread used of inappropriateanalyses ould be the result of a lak of information about ross-over trials in statistial textsommonly used by behaviourists. The problem is ompounded beause in many behaviouralexperiments researhers often reord data (suh as ategorial data or ensored time to eventdata) that might not allow the use of standard parametri analyses, and frequently measureseveral response variables that ought to be analysed with multivariate tehniques.The main objetive of this paper is to review the analysis of ross-over designs in theontext of animal behaviour experiments. This paper should be of immediate and pratial usefor behaviourists and statistial onsultants working with behaviourists. I review and show theonnetions among di�erent methods that have reently appeared in the statistial literatureand are relevant to behaviourists (e.g., multivariate responses and time to event data), butthat are not overed in available texts (JK; SN; Ratkowsky et al, 1993). On other topis (e.g.,linear mixed-e�ets models) I provide pratial disussion in the ontext of ross-over trials.Nonparametri and ategorial data methods are onsidered in reent reviews of ross-overtrials; I have inluded some new papers and eased the use of these methods by ross-referening



109statistis textbooks and software pakages. Small sample sizes, bloking, and among-subjettreatments are all relevant to animal behaviour experiments and are onsidered throughoutthe paper. I onentrate on methods that are available in major statistial pakages (speiallySAS, S-Plus, and R; note that R is free GNU software that an be obtained from CRANat http://ran.r-projet.org and mirror sites; unless spei�ed otherwise, S-Plus libraries areavailable from Statlib at http://lib.stat.mu.edu and R libraries from CRAN), or that an beimplemented with a minimum amount of ode writing. Finally, I emphasise randomization andpermutation tests (e.g., Edgington, 1995; Good, 1994; Noreen, 1989). Randomization tests,inreasingly used in behaviour and eologial researh (e.g., Manly, 1997; Crowley, 1992), area general alternative when parametri assumptions are not met, an be more powerful and�exible than traditional "non-parametri" methods, and might be the most appropriate testsfor many experimental settings (Ludbrook & Dudley, 1998).I review the analysis of data from ross-over designs aording to the type of responsevariable (e.g., Agresti, 1990, h. 1). A metri or interval response is one that has numerialdistanes between any two levels of the sale (e.g., length); arithmeti operations on the responseare meaningful. One speial type of metri responses is time to an event (examined later).Ordinal variables are ategorial variables that have ordered levels (e.g., bad, fair, good), butdi�erenes, sums, and other algebrai operations on the ranks or levels are not meaningful.Nominal ategorial variables have levels without natural orderings (e.g., Buddhist, Christian,Hindu). A partiular type of ategorial responses are binary outomes (suh as suess/failure).I �rst review the analysis of data from ross-over experiments. Next I over plotting andgraphial summaries in ross-over experiments. Then I disuss sample size and missing data.I onlude with some reommendations on the use and analysis of ross-over experiments inanimal behaviour experiments. Elsewhere (DU-1 �previous hapter) I have reviewed somebasi terminology and the design of ross-over trials.



1105.3 Metri responses: nonparametri and robust methods5.3.1 Within-individual ontrastsWith two treatments and dual designs, a ommon way to arry out robust analyses (JK, p. 60-65; 160; Hafner et al., 1988) is to use within-individual linear ontrasts to redue the data fromeah individual to a single number and then ompare these numbers between sequenes. Theuse of within-individual ontrasts is the basis of many analyses of ross-over trials (inludingsome multivariate analyses), and thus will be explained in detail.The within-individual ontrasts are linear funtions of the observations of eah subjet; theontrasts' oe�ients are the same for all sequenes, and the sum of the ontrasts' oe�ientsadds to zero. The estimator of the e�et of interest is the di�erene between (the mean of the)within-individual ontrasts of the two sequenes. For example, in the 2x2 design the ontrastfor treatment e�ets is the di�erene between the measures in the �rst and seond periods; weobtain the estimator of treatment e�ets as the di�erene between the mean ontrasts fromsequenes 1 and 2 (see JK �pp. 23-28� and SN �pp. 42-44; also DU-1).Contrasts are hosen so that they isolate the e�ets we are interested in (e.g., treatmente�ets). In the 2x2 design the Hills-Armitage analysis (explained in DU-1) is an example of thewithin-individual ontrasts logi. In more ompliated designs, there an be several possiblelinear ontrasts for a partiular e�et, but the estimators with the smallest variane are theOrdinary Least Squares (OLS) estimators (Hafner et al., 1988). The design matrix X (withone row per ell mean) used to obtain the OLS estimators inludes subjet, treatment, andperiod e�ets and, if appropriate, arry-over e�ets (see Ratkowsky et al., 1993, for exampleswith ross-over designs). SN (p. 238-248) shows how to obtain the estimators without usingmatries. Although these OLS estimators are, stritly, only optimal for uniform ovarianestrutures, with other ovariane strutures the estimators are less e�ient but are still unbiased(see JK) and will not result in inreased Type I error rates. These estimators will all take the



111form of a di�erene between groups of ontrasts among the periods and all the valid ontrastsmust have the same form in the two sequenes.One we obtain the ontrasts, we ompare them between the two sequenes. As a teststatisti we an use the di�erene between the two sequenes of the mean (within sequene) ofthe within-individual ontrasts. The p-value for this test an be obtained from a randomizationtest (e.g., Edgington, 1995), an independent t-test, or a Wiloxon rank sum (=Mann-Whitney)test (e.g., JK, p. 51-60; SN, p. 93); Tudor & Koh (1994; hereafter TK) use the quadratistatisti given by their eq. 2.8 instead of a t-test. If using a Wiloxon rank sum test, theranking is done after the linear ontrasts are applied (i.e., we do not rank the original data).Covariates (if their value remains the same over all periods of an individual) and other fatorsan also be examined by using as a response variable the within-individual ontrasts (insteadof the original values themselves) in a linear model that inludes the ovariates (e.g., Hafner etal., 1988). If using randomization tests, the restritions in the alloation of subjets (e.g., samenumber of subjets to eah sequene) should be taken into aount.In some designs (e.g., ABBA,BAAB), the variane of the estimator of treatment e�etsis smaller when no arry-over e�ets are inluded in the model. We an start with an OLSestimator from a design matrix that inludes arry-over e�ets, and if the test of arry-overe�ets learly indiates that these e�ets are unlikely, we ould obtain a new OLS estimatorof treatment e�ets from a design matrix that inludes no arry-over e�et (e.g., Hafner et al.,1988).An analysis based on within-individual ontrasts is robust in the sense that it makes noassumptions about the ovariane struture (JK, p. 65, 160, 283; Hafner et al., 1988), althoughthe analysis does assume that the responses of di�erent animals are independent. However, inpartiular in designs with many periods, power is lost with respet to, say, a linear mixed-e�etsmodel when assumptions of the mixed-model are met.The use of ontrasts an be understood in a randomization test ontext. Under the null



112hypothesis of no treatment e�ets, an individual that was assigned to sequene AB would haveyielded the same pair of values if it had been assigned to sequene BA, beause individuals areassigned randomly to sequenes. Thus, the di�erene between periods 1 and 2 should be thesame regardless of sequene assignment (note that possible period e�ets are thus taken intoaount). Contrasts must be the same regardless of sequene: under the null hypothesis, a linearombination of an individual's responses must remain unhanged �i.e., the estimate must beinvariant under permutations of the observations. For most designs we annot test for periode�ets using a randomization test: as periods are not randomized, the order of observationsmust remain the same in all possible random assignments of subjets to sequenes (Shen &Quade, 1983). In fat, the OLS estimator for period will di�er depending on the sequene, andwe annot devise a randomization test to examine period e�ets.Transformations of data an a�et the results of nonparametri and randomization methods.Before onduting any analyses, we should onsider the appropriate sale for the data; e.g., ifthe e�et of treatment will be to inrease the response in one treatment by a multiple of theresponse under the other treatment (i.e., a multipliative e�et) then we will probably want tolog-transform the data before any tests. Notie, however, that interpretation of results fromparametri and non-parametri tests an di�er (e.g., Conover, 1980; Johnson, 1995; Stewart-Oaten, 1995; Seaman & Jaeger, 1990).5.3.2 Bloking, among-subjet treatments, and more than two sequenesWhen experiments are arried out in bloks (e.g., weeks, age groups, or loations), analyses thatuse randomization tests an be applied as before, but the randomization tests must preservethe restrited randomization used in the experiment (e.g., Edgington, 1995; p. 131; Noreen,1989, p. 28; Maritz, 1995, p. 191). The test statisti is omputed from all data together foreah permutation, but the random realloation is restrited to within-bloks. Designs thatinvolve both among and within-individual level treatments an be analysed with the approah



113above, although are is required in the seletion of the test statisti and the spei�ation ofthe underlying model (e.g., interations between the among and within-individual treatmentsshould generally be onsidered). An alternative is to use the extended Mantel-Haenszel test(e.g., Agresti, 1990, p. 283, Koh & Edwards, 1988, p. 418; for ross-over TK, p. 358 and 375;there are several tests whih ontain the words "Mantel-Haenszel"; the test referred to here isappliable to ordinal response variables). With small sample sizes, this statisti's approximatehi-square distribution (1 d.f.) is not appropriate, and the p-value should be determined witha randomization test.Designs made by pairs of dual sequenes an be analysed like a bloked design, but noweah sub-design will have its orresponding OLS estimator. The analyses using t-tests involveobtaining a ombined estimator of the treatment di�erene and its variane, and are shown inJK (p. 171 and �.). Alternatively, with randomization tests, the testing proedure would beanalogous to a bloked design, where eah sub-design onstitutes a blok (e.g., TK, p. 376);however, in ontrast to the bloked design, here the test statisti is omputed separately foreah of the designs, and later ombined (after weighting by sample size of eah sub-design). Forthe AA,BB,AB,BA design see Elswik & Utho� (1989; also TK, p. 374).5.3.3 More than two treatmentsNon-parametri tests of designs for three or more treatments are more ompliated. SN (p.144-152) presents a test that an be applied to designs with the appropriate struture (e.g.,previous hapter, Table 4.5b, p. 101); the proedure is analogous to the one used for designsmade of dual sequenes (see paragraph above), where we test di�erenes between pairs of treat-ments by arranging sequenes in pairs where the two treatments appear in interhanged periods(analogous to dual designs). For eah pair, we obtain the statisti by forming the appropriatewithin-individual ontrasts. We then ombine the statistis over all pairs of sequenes using aweighted sum. This is another example of the extended Mantel-Haenszel test, and an be anal-



114ysed as suh (SN, p. 150; Koh & Edwards, 1988). Appliation of this test requires a partiular(and somewhat restritive) design; if we suspet we will use nonparametri methods, we shoulddesign the trial to onform to this struture in advane.For designs that do not have this struture, Peae & Koh (1993) present a more general test,whih is based on obtaining sequene di�erenes of period ontrasts, so as to isolate the e�etsof interest (e.g., pairwise di�erenes between treatments). This method requires relatively largesample sizes and that the di�erent sequenes have the same number of subjets; alloation ofsubjets to sequenes during the exeution of the experiment should be done by bloks (withnumber of subjets per blok an integer multiple of the number of sequenes). A randomizationtest for a three-period, three-treatment trial is shown in Shen & Quade (1983); it an handlemissing data, but assumes unorrelated errors.Tests for three-treatment, three-period designs that onsist of repliated sets of two Williamssquares are shown in Bellavane & Tardi� (1995). These tests are based on a non-parametri testof a randomized blok design (a proedure similar to, but more e�ient than, Friedman's test);it assumes that orrelation of errors aross time does not hange, and it an not be extendedto more than three treatments. For the s-treatment, s-period (s≥3) Williams square design,Ohrvik (1998) presents tests for treatment e�ets (and proedures for multiple omparisons);these tests also assume that orrelation of errors aross time does not hange.5.4 Metri responses: linear mixed-e�ets modelsThe distinguishing features of ross-over designs (e.g., JK; Lindsey, 1993) are time-hanging o-variates (the most obvious one being the within-individual treatment; other within-individualovariates might also hange over time) and potentially orrelated observations within individ-uals. Covariates an easily be onsidered in linear mixed-e�ets models, and these models analso be used to analyse omplex experimental designs. Traditionally, ross-overs (and other re-



115peated measures designs) were analysed with split-plot ANOVA. With more than two periods,however, the split-plot analysis makes restritive and potentially unrealisti assumptions aboutthe ovariane struture (the so-alled spheriity ondition that, for example, implies that dif-ferenes between responses in any two periods have the same variane). There are ways to dealwith these restritive assumptions (e.g., Diggle et al., 1994; Crowder & Hand, 1990), but it isgenerally more satisfatory to diretly model the ovariane struture using linear mixed-e�etsmodels (see Pinheiro & Bates, 2000; Littell et al., 1996; also Verbeke & Molenberghs, 1997;Bennington & Thayne, 1994; Lindsey, 1993). Mixed models are ideally suited for ross-overexperiments as the latter inlude both �xed e�ets (treatment, period, arry-over) and randome�ets (the subjets or animals). Moreover, software for linear mixed models allows �exiblemodelling of the ovariane struture, deal muh better with unbalaned data than traditionalANOVA, and allow use of ovariates that hange both at the within and among-individual level.Additionally, mixed models an reover information about treatment e�ets available betweensubjets (Littell et al., 1996), whih an be important in ross-over designs with unbalane(Brown & Kempton, 1994), either from missing data or by design �e.g., partially balaneddesigns. Finally, linear mixed-models are natural for examining questions of repeatability andindividual di�erenes (an important topi in animal behaviour �e.g., DeWitt et al., 1999; Ara-gaki & Me�ert, 1998; and referenes therein), as they make it possible to test the relevane ofthe among-individual variane omponent.Linear mixed models an be �tted using, for example, S-Plus and R (library nlme), SAS(PROC MIXED), as well as BMDP, Genstat, and others. Examples with ross-over trials arepresented in Vonesh & Chinhilli (1997, h. 4), Littell et al. (1996, pp. 392 & �.), Lindsey (1993;pp. 136 & �.). Aside from the modelling of ovariane struture and variane heterogeneity,mixed models have many similarities with the usual linear models. An overview of the theoryof linear mixed models an be found in Pinheiro & Bates (2000) and Littell et al. (1996) (seealso Davidian & Giltinan, 1995, h. 3). General strategies for model building are disussedin Pinheiro & Bates (2000) and Diggle et al. (1994; speially h. 4 and 5) (see also Verbeke



116& Molenberghs, 1997); in the ontext of ross-over designs, see Vonesh & Chinhilli (1997,h. 4). Diagnosti plots of �tted models are overed in detail in Pinheiro & Bates (2000; seealso Verbeke & Molenberghs, 1997). Mixed models present some di�ulties with seleting theappropriate degrees of freedom to use when testing �xed e�ets (Brown & Kempton, 1994 �butwith large F-values the di�erenes in d.f. are inonsequential), and an be questionable withsmall sample sizes (in partiular for the e�et on estimation of the ovariane matrix).Beause of the problems with arry-over e�ets, there has been disagreement about theappropriate parameterisation of the 2x2 design (e.g., see Ratkowsky et al., 1993, h. 3). Oneparameterisation, based on JK (p. 30) is
yijk = µ + λi + sij + other.random + πk + τd[i,k] + other.�xed + eijkwhere in the �xed e�ets part µ is the interept, λ is the arry-over (whih in this parameterisa-tion is equivalent to a sequene e�et), π is the e�et of period k, τ is the diret treatment e�etof the treatment given in period k of sequene group i, s are independent and identially dis-tributed (i.i.d.) N(0,σ2

s) are the random e�ets of individual j in sequene i, and e i.i.d. N(0,σ2)are the within individual errors. All random e�ets are independent of eah other. "Other.�xed"refers to other �xed e�ets (ovariates like body weight or temperature), and "other.random"refers to other random e�ets (e.g., bloks). A problemati aspet of this parameterisation forthe 2x2 design is the inlusion of the arry-over e�ets (see disussion above).A parameterisation that an be extended to models with more than two periods is
yijk = µ + ξi + other.�xed + other.random + sij + πk + τd[i,k] + λd[i,k−1] + eijkwhere everything is as above, but we have added ξ as the e�et of sequene. e i.i.d. N(0,R) isthe random error assoiated with the m-th period measurement of subjet k from sequene i,where R is the within-individual ovariane matrix and is the same aross levels of i, j, k. All



117random e�ets are independent of eah other. Here we an inlude both sequene and arryover e�ets. When there are more than two periods, the ovariane struture should always bemodelled appropriately. I have inluded in the later model a sequene e�et; this is not doneby JK or SN, but it appears in Vonesh & Chinhilli (1997, h. 4; see also Lindsey, 1993, p.15 and 135). We will generally want to inlude a term for sequene for three reasons. First,when �tting mixed models it is onvenient to start with a "saturated model" to estimate theovariane struture (Diggle et al., 1994, h. 4). Seond, the sequene e�et, if signi�ant, mightalert us to potential problems with the model; a signi�ant sequene e�et might result frombad luk during the randomization of subjets to sequenes, but it ould also be the result ofhigher order treatment*period and treatment*arry-over interations not inluded in the model(see also Elswik & Utho�, 1989). Third, in some ases sequene e�ets might be what area�eted by among-subjet treatments (i.e., we will �nd signi�ant sequene by among-subjettreatment interations).When modelling period e�ets it might be appropriate to initially model them as a ategor-ial variable (as the e�et of period might plateau), but it might be possible to obtain a simplermodel by using polynomial ontrasts and sequentially eliminating the higher-order terms, whihould result in a model with just a linear trend with time. Moreover, modelling period as aontinuous variable eliminates the onfounding of period with arry-over (Ratkowsky et al.,1993). Finally, although a typial strategy of model building is generally employed (JK, butsee SN), where non-signi�ant terms are dropped from the model, the orret approah withnon-signi�ant arry-over e�ets is debated (e.g., JK, p. 150).There are some di�erenes in the literature on how to ode the arry-over term. For example,suppose that our design has treatments A, B, C; we will need a arry-over olumn in our datawith levels A, B, C, and 0 (Crowder & Hand, 1990, p. 107), as the �rst period has no previoustreatment (but this means that the �rst period and arry-over 0 are ompletely onfounded).This is the approah used by SN and Littell et al., 1996 (p. 392). However, in SAS we will



118not be able to obtain estimates (e.g., LSMEANS statement); thus, Littell et al. (1996) reodearry-over, reating one dummy variable per treatment whih has a 1 if that treatment was inthe previous period, and 0 otherwise; this has no e�et on the p-values, but allows to obtainestimates. We an also use dummy variables for both period and arry-over that avoid over-parameterisations (see e.g., Diggle et al., 1994, p. 156). In the example of three-periods andthree-treatments, for period we use two dummies (say, x1 and x2), whih take value 0 on the�rst period, and for arry-over we use also two dummies (say, x3 and x4), whih take value 0for previous treatment A; note that we do not need to ode for the no-arry-over of the �rstperiod, as this orresponds to x1=0 and x2=0. This third oding strategy should produesimilar results as the �rst two. The �rst two approahes do not work with nlme (S-Plus andR) if period is oded as a ategorial variable, as we end up with a singular design matrix;however, the third will work in both SAS and S-Plus and R. Littell et al. (1991, p. 206) use adi�erent method, whih an yield di�erent results from the above one. Ratkowsky et al. (1993)propose making the �rst arry-over (0) equal to one of the other treatments; this, however, isnot reommended as results from mixed models depend on whih other treatment is plaed asthe arry-over in the �rst period.The d.f. that our analyses will yield should be examined during the design period, andalso serve as a hek of the software output (but beware that Satterthwaite's approximationmight yield di�erent d.f. in unbalaned designs). Following JK (p. 141), for a design withs sequenes and p periods we will have (sp-1) d.f. that an be divided in (s-1) d.f. betweengroups, (p-1) between periods, and (s-1)(p-1) for the group*period e�ets (more will be availableif period is modelled as a ontinuous variable). The latter (group*period d.f.) are the d.f. whihrelate to the e�ets of interest, speially treatment e�ets, treatment*period interations, andarry-over e�ets. We an partition these d.f. in several di�erent ways, but we will always belimited by the total (s-1)(p-1) d.f. (or more if period is ontinuous). JK disuss how someterms (in partiular arry-over and treatment*period) might be aliased, whih an a�et theinterpretation of treatment e�ets (see also Koh et al., 1983). With among-subjet treatments,



119some of the d.f. will be used to aount for interations suh as treatment*among-subjettreatment, period*among-subjet, et.5.5 Categorial dataCategorial data are among the most di�ult to analyse in ross-over designs; at the same timethis is an area of very ative statistial researh. I start disussing several nonparametri-likemethods, �rst for binary responses and next for ordinal outomes. Later I review methods thatare expliitly model-based.5.5.1 �Nonparametri-like methods�For the 2x2 trial with binary response, there are two main tests for treatment e�ets (see JK, p.89-105; SN, p. 106-109; Crowder & Hand, 1990, p. 109-110; Fidler, 1984), and (as usual) thesetests are appropriate for treatment e�ets in the absene of di�erential arry-over e�ets. Bothtests are based on omparing sores for individuals in the two periods; eah subjet yields a pairof responses, d, whih means response  in period 1 and response d in period 2; thus, we anhave pairs 00, 11, 01, 10 (the last two outomes are referred to as showing a preferene). TheMainland-Gart test uses only information form the 10 and 01 outomes, omparing the numberof eah of these outomes between the two sequenes using, for example, Fisher's exat test.Presott's test is equivalent to soring pro�le 01 as -1, pro�le 10 as +1, and pro�les 00 and 11as 0, and omparing the mean pro�le between the two sequenes using a randomization t-test(whih is equivalent to using an exat onditional test for linear trend on the 2 x 3 ontingenytable �this is di�erent from an exat test for independene). If the software pakage reportsone-sided p-values for exat onditional tests for ontingeny tables we will want to doublethat p-value. The Mainland-Gart test does not depend on the random alloation of subjetsto sequenes, whereas Presott's test does, but in virtually all behavioural eology experiments



120subjets will have been alloated to sequenes randomly. Moreover, Presott's test is generallymore sensitive than the Mainland-Gart test. Thus, Presott's test is likely to be the more usefulof the two. However, tests of binary response data in 2x2 trials tend not be very powerful (i.e.,they are not very sensitive to treatment di�erenes), and this an be aggravated if only a fewsubjets in eah sequene show a preferene (i.e., are either 01 or 10). Beker & Balagtas(1993) present a test that an an be slightly more powerful than Presott's test, but is alsomore ompliated.For binary responses and designs with three or more treatments and a partiular struture(e.g., Table 4.5 b, p. 101), SN (p. 153-155) proposes a method analogous to the one desribedabove for non-parametri analyses of metri responses with more than two treatments; thismethod an be applied with both Mainland-Gart's and Presott's tests.With ordered ategorial data, Senn (SN, p. 109-113; for a detailed example see also Senn,1993 b, and disussion by Ezzet & Whitehead, 1991, 1993) presents a simple method based ona heuristi argument for the 2x2 design. For eah subjet, we redue the data from the twoperiods to another ordered ategorial response (e.g., if in period 1 an individual was in goodondition whereas in period 2 it was in very good ondition, the value for this individual beomes"improve"). We are left with ordinal data for eah sequene, and di�erenes between the twosequene groups are an indiation of treatment e�ets. We an ompare the two sequenegroups using, e.g., proportional odd models (Agresti, 1990, pp. 323-331). These methods mightbe questionable in trials with small sample sizes.Alternatively, for ordinal data, TK (pp. 359-361) present several tests based on Wiloxon'srank sum statisti; these tests involve di�erenes between ranks within periods (in ontrast tothe other non-parametri tests where ranking was done over the whole sample). These statistisare easy to ompute; with small samples, the p-value an be obtained from the permutationdistribution. A more ompliated approah is presented in Brunner & Newmann (1987) whouse di�erent tests based on alternative shemes of ranking the observations.



121For 2-treatment, 2-sequenes (and ≥2 periods) designs, Jung & Koh (1999) present adevelopment of methods disussed in TK (p. 361-362) based on Mann-Whitney measures ofassoiation. In eah period, these statistis estimate the probability of a larger response of arandomly seleted member from one of the groups relative to a randomly seleted member ofthe other group. This method allows strati�ation and inlusion of ovariates and only requiresmoderate sample sizes (≥ 10 individuals per sequene); the method is slightly ompliated toapply (although Jung & Koh, 1999, present three detailed examples of appliation), but isuseful for ordinal response variables and ontinuous asymmetri distributions (with possibleoutliers). Nonparametri methods for ordinal data with three or more treatments are not welldeveloped.5.5.2 Expliitly model-based methodsThe methods in the previous setion are spei� for ertain types of responses and/or designs.However, it is possible to analyse ategorial data (binary, nominal, and ordinal) for a potentiallyunlimited range of ross-over designs with methods based on expliit models (see Kenward &Jones, 1994). These methods are based on generalized linear models (MCullagh & Nelder,1989; Agresti, 1990; Dobson, 1990; Crawley, 1993). Generalized linear models are extensionsof linear models that make it possible to analyse data in whih a funtion �alled the linkfuntion� of the mean response (but not the response itself) is linearly related to a set ofpreditors, and where the variane of the response might be a funtion of the mean response;generalized linear models have beome the standard way of analysing ategorial data.With ategorial data (and also with other data, suh as survival; see below) we needto distinguish between di�erent types of models, the two most ommon being marginal orpopulation averaged, and subjet-spei� or random-e�ets (see disussion in Kenward & Jones,1994; Albert, 1999; Diggle et al., 1994, h. 7; Lindsey, 1993, h. 2; Liang et al., 1992; Zegeret al., 1988). Brie�y, marginal models model the marginal distribution of the response as



122a funtion of the explanatory variables; this modelling is done separately from the within-subjet orrelation aross time (whih is treated as a nuisane) and the estimated oe�ientshave a population interpretation (not an individual interpretation). In ontrast, in subjet-spei� models a random e�et for an individual is introdued (as was done in the linear mixedmodels), and the parameter estimates (say, for treatment e�ets) modify the probability of aspei� subjet giving one response instead of another. The distintion between marginal andsubjet-spei� models is not important for linear models beause we an formulate the twoapproahes so that the oe�ients have the same interpretation; however, with ategorial (andsurvival) data this is generally not the ase for most link funtions.Generalized estimating equations (GEE) are marginal models and an be implemented (seeHorton & Lipsitz, 1999) using SAS (PROC GENMOD) and S-Plus and R (library gee; forS-Plus also library yags at http://www.biostat.harvard.edu/�arey); GEE's should performrelatively well in experiments with at least 20 subjets; estimators (e.g., of treatment e�ets)are onsistent even when the orrelation struture is misspei�ed, and testing is done using arobust estimator of variane; Albert (1999) and Horton & Lipsitz (1999) present useful tutorialson GEE's. However, J. K. Lindsey, has pointed out �pers. omm.� that GEE's are notappropriate for ross-over designs, beause GEE's treat dependene among observations as iftreatments were between subjets, instead of within subjets; thus, the orreted standard errorsfrom GEE's are in�ated instead of redued �the opposite of what one wants�, and thereforeresult in lower statistial power. Generalized linear mixed models are subjet-spei� modelsin whih the random subjet e�ets are assumed to follow some distribution; these models anbe �tted with SAS (PROC NLMIXED and maro GLIMMIX �Littell et al., 1996), and R(library repeated, from J. Lindsey, available at http://www.lu.a.be/�jlindsey/rode.html; seealso Lindsey's libraries gnlmm for generalized non-linear mixed models and library growth) butmight not perform adequately with small sample sizes. Conditional likelihood models are alsosubjet-spei� models (but here the subjet e�ets are eliminated), and they an be �ttedusing software for log-linear models, suh as SAS's PROC CATMOD (see Kenward & Jones,



1231991, for examples), and for some onditional models distribution-free and exat permutationtests are available (Agresti, 1993; Kenward & Jones, 1994). Disussion and referenes of GEE'sand generalized linear mixed e�ets models an be found in Albert (1999), Horton & Lipsitz(1999), Littell et al. (1996, h. 11), Vonesh & Chinhilli (1997, h. 8), Diggle et al. (1994, h.7-9), Kenward & Jones (1994), Lindsey (1993, h. 2), Lipsitz et al. (1994), and SAS's on linemanual (whih inludes a ross-over example). Reent examples of appliations to ross-overtrials are shown in Diggle et al. (1994; GEE's in pp. 154-159; onditional likelihood in pp.175-181), Kenward & Jones (1994) and Lindsey (1993, pp. 201-204).5.6 Time to event data: ensored observationsMany studies in animal behaviour ollet time to event data (also alled failure time data orsurvival data) suh as time until a ertain behaviour is displayed (e.g., time to reemerge from arefuge following a predator's attak). Generally, animals are observed for a predetermined time,and the observer reords when the event takes plae. If the event takes plae in every period forevery subjet, these are metri data (and an be analysed with either parametri or nonpara-metri methods). However, for some subjets the event might not our within the observationperiod, whih results in ensoring (i.e., all we know is that the time till the event ours islarger than the observation time). Although a small number of ensored observations proba-bly does not prelude the use of the parametri and nonparametri methods above, ensoredobservations make usual tehniques for metri data, inluding non-parametri ones (see Franeet al., 1991; Duroq, 1997), inappropriate. Censoring an violate several of the assumptionsof both parametri and non-parametri tests and will result in tests insensitive to treatmente�ets and biased estimates of treatment e�ets. In partiular, onverting survival data into0/1 data (for no-event and event respetively) is not only arbitrary (the oding depends onthe time at whih the ategorisation is made) but is also a very ine�ient use of information.Moreover, 0/1 sores do not really failitate the analysis with ross-over designs.



124Censoring an be of several types (for details see, e.g., Klein & Moeshberger, 1997; Lee,1992). The most ommon in behavioural studies is Type I ensoring, where the event is observedonly if it ours before some predetermined time. This ensoring time is usually ommon for allindividuals; with random ensoring �ensoring time a random variable� data an be analysedwith methods for Type I ensoring, provided that ensoring and survival times are independent(O'Brien & Fleming, 1987; Heimann & Neuhaus, 1998).Analysis of ensored data, generally referred to as survival analysis or reliability analysis,is well developed (e.g., Klein & Moeshberger, 1997; Collett, 1994; Lee, 1992; Lawless, 1982;Kalb�eish & Prentie, 1980), but tehniques appliable to experiments where the same indi-vidual experienes the event repeatedly are not ommon. Some methods have been proposedto analyse paired ensored data (e.g., Woolson & O'Gorman, 1992; O'Brien & Fleming, 1987),but these methods annot be applied to ross-over designs if there are period e�ets.Two reent tehniques available to analyse repeated time to event derive from the analysisof multivariate time to event data, but might not be appropriate with small sample sizes. Themethod developed by Lee et al. (1992; see also Lin, 1994, 1993; Wei et al., 1989) assumes amarginal proportional hazards model; it does not require that we speify the form of the jointdistribution of the observations of eah subjet. Frailty models (e.g., Klein & Moeshberger,1997, h. 13; Duroq, 1997; Therneau & Grambsh, 2000) are subjet-spei� models in whihall the observations from a subjet share a ommon frailty (a ommon random e�et that a�etsthe hazard rates of all the observations of a subjet); frailty models require that we assumea partiular distribution for the frailty (generally a gamma). Both the marginal and frailtymodels are available in S-Plus and R (library survival5) and in SAS (PROC PHREG �Allison,1995, pp. 236-247).Lindsey et al. (1996) present a method spei� for ross-over designs based on log-linearmodels, whih has the advantage that it works with relatively small sample sizes and an be�tted with software that handles generalized linear models suh as S-Plus, R, SAS, GLIM. The



125R library event (available at http://www.lu.a.be/�jlindsey/rode.html; the syntax for modelbuilding with this library is somewhat di�erent from other R statistial models) will �t these(see funtion ehr) and other models for repeated ensored data. Segal & Neuhaus (1993) presenta related marginal method that ombines Poisson regression with GEE and an be implementedwith SAS, S-Plus, or R. Two advantages of all these four methods are: a) they an aommodateovariates and fatorial designs that mix within- and among-subjet treatments �although notneessarily nested designs; b) they an be used to analyse experiments where we have measuredmore than one response variable. Many modelling strategies for these methods are ommonwith linear models (see above).Feingold and Gillespie (1996) suggested two nonparametri-like approahes for two-treatmentdesigns. Their seond method is tailored to the 2x2 design but is di�ult to extend to other de-signs. Their �rst method has wider generality; one �rst ranks (see below) all the observations,and then applies the proedures for omplete data to these ranks (i.e., one applies within-individual ontrasts to the ranks, and later ompares the within-subjet ontrasts between thesequenes; note that with Koh's (1972) method, however, one �rst omputes within-individualontrasts and then ranks them). There are several ways of ranking the observations in theontext of survival analysis; Feingold & Gillespie (1996) employ Gehan's (1965a & b) sores;log-rank sores (see explanation in, e.g., Lawless, 1982, p. 420; Lee, 1992, p.109-112) might bepreferable (Prentie & Marek, 1979; O'Brien & Fleming, 1987; Kalb�eish & Prentie, 1980;Lee, 1992; Lawless, 1982). The p-value for this test ould be obtained with a t-test, a Mann-Whitney test, or a randomization test. This method is easy to apply, and it an be used withmultiple strata or trials omposed of dual designs, e.g., by using the extended Mantel-Haenszeltest with the log-ranked data (e.g., TK) or using randomization tests where randomizationis onstrained within strata. An example of the appliation of this method to a behaviouralexperiment is given in Díaz-Uriarte (1999). An alternative to Feingold & Gillespie's (1996)approah is to apply the methods in "Ordinal responses" to log-ranks of the data (see TK, p.365).



1265.7 Multivariate responses and repeated measures within peri-odsBehavioural eology experiments frequently ollet more than one response variable (e.g., in ananti-predator experiment in eah period we might measure distane from the predator and timeto re-emerge from the refuge, so we would have measured q=2 di�erent response variables).This is somewhat similar to making repeated measurements (of the same response variable)within eah time period (e.g., in eah one of p periods, we might reord the preferred perhheight at 5 min intervals during 1 h; thus we have q "sub-periods" �here q=12� or di�erentmeasurement oasions within eah period). In both ases these are alled "doubly multivariate"or "multivariate repeated measures". Multiple univariate tests of eah one of the responsevariables (or at eah one of the repeated observation times) an result in inferential problemsas they ignore possible dependenies between observations (e.g., Krzanowski, 1990, p. 235 &�.; Johnson & Wihern, 1998). Sometimes there is a large inrease in Type I error rate (i.e.,the true experiment-wise alpha level is larger than the nominal alpha level); other times fullymultivariate approahes an attain larger power by using the information from the orrelationamong variables. With multiple responses it is frequently advised (e.g., Johnson & Wihern,1998) that one should initially use a multivariate test and only if it reveals signi�ant di�erenesemploy univariate tests on eah response variable.For metri data, JK devote a hapter (h. 6) to repeated observations of the same variable.First, we ould summarise the repeated data for eah individual into one or a few statistis,suh as area under the urve, slope and interept, et.; this is the simplest approah. However,this approah is problemati when the data are inomplete, and when ovariates take di�erentvalues during the observation session. Moreover, use of this approah requires obtaining asienti�ally meaningful data summary, and thus assuming that all the information in the datathat is not re�eted by the summary statisti(s) is sienti�ally uninteresting (see also Crowder& Hand, 1990, h. 1; Diggle et al., 1994, h. 6 for disussion).



127With two-sequenes designs, a seond approah (see JK, h. 6) is to obtain individualontrasts (see above) for eah sub-period q; thus, we redue the data from a total of q*pto q derived measurements, and an analyse these q derived measurements with appropriaterepeated measures tehniques (e.g., MANOVA). For instane, Patel & Hearne (1980; see alsoRodríguez-Carvajal & Freeman, 1999, p. 399) use a multivariate linear model and obtain, foreah subjet, a new transformed variable whih is a linear ombination of the original responsesover the q sub-periods, and then use a two-sample Student's t-test on the transformed variable.This proedure tests the hypothesis that the sum of treatment e�ets over all periods is the samefor the two sequenes (and thus would not be appropriate with multiple responses �di�erentvariates).A third approah, more satisfatory and �exible (and a neessity with more ompliateddesigns) is to �t all the data in a single model (i.e., avoid reduing the data to q derivedmeasurements). We an use a split-plot in time repeated measures ANOVA where we havethree strata: between-subjets, within-subjets-among-periods, and within-period (i.e., the"sub-period" level). These analyses, like other split-plot-in-time repeated measures, make as-sumptions about the ovariane struture whih might not be appropriate; moreover, they areumbersome if the spaing between suessive measurements is unequal or if there are missingdata. Thus we an also employ linear mixed e�ets models by speifying the orrespondingrandom e�ets and ovariane strutures (see an example in Littell et al., 1996, pp. 388 and�.). In addition, Galeki (1994) disusses some ovariane strutures whih an be used withmixed models and allow �exibility for modelling the orrelation strutures for eah repeatedfator. These strutures an be �tted using SAS's PROC MIXED; with the nlme library forS-Plus and R these strutures an be �tted by de�ning the appropriate orrelation struture.With multiple response variables, appliation of Galeki's (1994) strutures might not beappropriate (as they require that the marginal ovariane struture assoiated with time bethe same for every response variable). Thus, mixed models with more omplex ovariane



128strutures (and a larger number of parameters) need to be �tted (e.g., Amemiya, 1994; Vonesh& Chinhilli, 1997). These models ould be �tted, for instane, using a ompletely unstrutured(positive-de�nite) variane-ovariane matrix (but in this ase we would probably be estimatingtoo many parameters). Alternatively, in S-Plus or R it might be possible to de�ne speialovariane strutures tailored to our spei� situation (e.g., unstrutured exept for bloksalong the diagonal with partiular strutures for the within-variate ovariane struture).With ategorial data, both GEE and generalized mixed models an aommodate multipleresponses, although the latter requires that we speify the ovariane struture. With time-to-event data, multiple responses an be easily analysed with the marginal approah of Lee et al(1992; we only need to obtain the quadrati form for the multivariate tests as in pp. 1066 and1070 in Wei et al., 1989; see also doumentation of library survival5) and the log-linear modelsof Lindsey et al. (1996; see pp. 531 and �. for a worked example).For some ross-over designs with multivariate normal responses, some simple approaheshave been worked out. Rodríguez-Carvajal & Freeman (1999) show how to arry out a multi-variate analysis in the 2x2 ase using Hotelling's T2 (a ommon statisti for multivariate om-parisons of two groups; e.g., Morrison, 1990; Krzanowski, 1990). Grender & Johnson (1993; pp.71-74 and 84) had proposed a similar but more general approah that an be extended to somehigher-order designs, and it is appliable to both repeated measures and multiple responses,and to multiple responses with repeated measures for eah response. The tests of Rodríguez-Carvajal & Freeman (1999) and Grender & Johnson (1993) for the multiple response situationis a simultaneous (multivariate) test of the hypothesis that the treatment e�et vetors arethe same in both sequenes (whih is appropriate when variates are not measured in the samesale), and di�ers from the test of Patel & Hearne (1980) explained above.A di�erent approah is to use nonparametri, rank-based, and randomization multivariatetests. Analogous to robust and nonparametri tests, the �rst step is to redue the p*q measure-ments of eah individual to a set of q variates by applying within-individual ontrasts separately



129to eah variate (see Nonparametri setion). We will refer to these as w-q. (With survival dataa possibility is to apply the methods of Feingold & Gillespie (1996) by obtaining the w-q fromthe log-ranks or Gehan's sores of the data �not the original, ensored, data; however, it isunknown how well this approah works). This �rst step of obtaining the w-q variates will beommon to all the remaining multivariate tests. The next step is to ompare, with the ap-propriate multivariate test, the w-q variates among sequenes. Therefore, we an apply anymultivariate test provided that we an set the hypothesis test as a omparison among sequenesof within-individual ontrasts. This will be possible (see JK, pp. 171 & �.; SN, pp. 144-152;�Metri responses: nonparametri and robust methods� setion) with two-treatment designsomposed of pairs of dual sequenes and with designs for more than two treatments that havethe speial struture in Table 4.5b, p. 101 in the previous hapter (but it might not be possibleotherwise; this emphasises again the need to onsider design and analysis before ondutingthe experiment). As was done before, we might want to start with within-individual ontraststhat inlude arry-over e�ets, and later reompute the w-q from ontrasts without arry-overif multivariate and univariate tests show no evidene of arry-over e�ets in any variable.A very simple approah is to use the test in O'Brien (1984); �rst, eah w-q is rankedseparately; next, for eah individual we ompute Si as the sum of the ranks of all of the w-q.We test the null hypothesis of no overall di�erene between treatments by omparing the Si'sbetween sequenes, using a two-sample t-test, a rank-sum test, or a randomization test. Thismethod an be extended to aommodate individual-level ovariates (by using, e.g., a linearmodel with Si as the response and sequene and ovariate as independent variables) and bloking(see �Metri responses: nonparametri and robust methods�). This appliation of O'Brien's testis very similar to Patel & Hearne's (1980) method, exept that we use a linear ombination ofthe ranks instead of the original variables (whih is what makes it possible to apply the test tovariables measured in di�erent sales). A drawbak of O'Brien's test is that it is appropriateonly for some limited alternative hypotheses (see below).



130After ranking eah w-q separately, an alternative to O'Brien's (1984) test is to use themultivariate extension of the Kruskal-Wallis test (Puri & Sen, 1971, p. 184 & �.), whih isequivalent to applying a MANOVA on the separately ranked w-q variates (Zwik, 1985; notethat with only two groups a MANOVA is the same as Hotelling's T2). This is the test disussedin Johnson & Grender (1993; however they ompute the test statisti using N*Pillai-Bartlett'strae, instead of (N-1)*Pillai-Bartlett's trae, as in Zwik, 1985; this is inonsequential if arandomization test is used, but not if the hi-square approximation is used).A di�erent test is obtained by applying the proedures of Mielke and ollaborators (Mielkeet al., 1976, 1981 a & b) to the w-q variates (without ranking), as explained in Johnson &Merante (1996). This method does not assume any partiular distribution for the data or ho-mosedastiity. We ompute the average distane among the individuals of the two sequenes inthe q-dimensional spae de�ned by the w-q variates, using an appropriate distane metri (e.g.,Eulidean distane �but distane metri an a�et power; Díaz-Uriarte & Nordheim, in prep.).Under the null hypothesis, permuting individuals randomly between the two sequenes shouldhave no e�et on the average within-sequene distane, but under the alternative hypothesispermuting individuals should inrease the average within-sequene distane. (P-values an beobtained from randomization tests, or using an approximation; see Mielke et al., 1976, 1981b;Berry & Mielke, 1983). When di�erent response variables are measured in di�erent sales, wewill probably want to give equal weights to all variables; equal weights an be ahieved by sal-ing the data (e.g., to a mean of zero and variane of one) before omputing the within-subjetomparisons or by applying the test to the ranks of the w-q variates �where eah w-q is rankedseparately�; (see Johnson & Merante, 1996). An example of the appliation of this methodto a behavioural study is given in Díaz-Uriarte (1999).The tests disussed so far have been previously used with ross-over designs. Besides them,other randomization (e.g., Manly, 1997, h.12; Edgington, 1995, h. 8) and rank-based (e.g.,Puri & Sen, 1971, 1985; Thompson, 1991; Choi & Marden, 1997; Hettmansperger et al., 1998)



131multivariate tests ould potentially be applied, either to the w-q variates or their ranks (withranks omputed for eah variate separately or all together, depending on the test).In summary, we an apply a fully multivariate approah to the original responses; thisrequires modelling the variane-ovariane matrix in linear mixed models but not neessarilywith GEE's or marginal survival models. When this is not feasible, multivariate and repeatedmeasures tests an be applied to the w-q variates/responses. The latter, although more robustthan, say, a fully multivariate linear mixed model, an also be onsiderably less powerful aswe lose degrees of freedom when we redue the data to w-q ontrasts The appropriate statistiwill depend on the null and alternative hypotheses and the struture of the data (and shouldnot be deided based upon the results of the tests). For example, O'Brien's (1984) test is notdesigned to detet treatment e�ets that our in only a few variates, or when the responsesin di�erent variates are not onsistent (e.g., if there are negative orrelations among variates).On the other hand, Hotelling's T2 is not the most powerful test against restrited alternatives.Moreover, among nonparametri and rank-based multivariate tests, performane an be stronglya�eted by the shape of the distributions. Finally, di�erent multivariate tests make di�erentassumptions (normality, homosedastiity, symmetry of distributions, et.). Disussion an befound in Smith (1998), Choi & Marden (1997), Manly (1997, h. 12), Edgington (1995, h. 8),Westfall & Young (1993, h. 6), Lahin (1992), Bernstein et al. (1988), and O'Brien (1984).A di�erent approah is to adjust the p-values to ontrol for the inrease in Type-I errorrate from multiple univariate tests (e.g., Wright, 1992 and referenes therein; two artiles inbiologial journals are Rie, 1989 and Chandler, 1995). These adjustments are better suited forsituations (suh as data snooping) where we are testing many individual hypotheses and wantto ontrol overall Type I error rates (e.g., we want to examine in whih of �ve response variablesa treatment has some e�et), but are probably not the best approah when we ondut ourexperiment with the objetive of testing a partiular multivariate hypothesis (spei�ed beforethe experiment was onduted); this approah is also useful when it is not possible to ombine



132the di�erent tests into a single multivariate test. Most of the most reent methods (e.g.,Hohberg's and Holm's sequential Bonferroni methods) provide muh higher power than thetraditional Bonferroni method (without inreasing experiment-wise error rates), and some ofthem inrease this power further by taking into aount possible ovariation among variables(e.g., Westfall & Young, 1993). For instane, the resampling-based methods in Westfall & Young(1993; see also SAS Institute, 1996, doumentation for PROC MULTTEST) ould be appliedto the between sequene omparison of the w-q variates. Alternatively, we an employ theusual methods for ross-over trials with eah variable independently, and later make an overallstatement about the e�et of a treatment by using, for example, Holm's multiple omparisonsmethod.Even in the absene of rigorous statistial methods for dealing with multiple response vari-ables, some of the inferential problems arising from multiple responses an be minimised withareful experimental design and analysis. For instane, what hypotheses will be tested, andwith what variables, an be spei�ed a priori; also, di�erent variables an be used to test dif-ferent (biologial) hypotheses, so that even if the data are not statistially independent, theyat least refer to very di�erent biologial phenomena. This is not to suggest that other variablesshould not be examined for treatment e�ets, but just that testing of pre-spei�ed hypothesesshould be di�erentiated from hypotheses generation, for whih data snooping might be wellsuited (see also disussion in Stewart-Oaten, 1995). Paraphrasing Rie (1989, p. 225), adjust-ment for multiple testing is neessary beause, otherwise, as authors we will be spending manypages disussing spurious results, and as readers we will be wasting our time reading aboutrelationships that an be explained just by hane.5.7.1 PCA in lieu of MANOVA?A potential mistake in the analysis of multiple responses is to try to use Prinipal Compo-nents Analysis (e.g., Morrison, 1990; Krzanowski, 1990; Bernstein et al., 1988) to redue the



133dimensionality of the response spae, and then analyse the prinipal omponents sores as ifthey were independent response variables. This proedure is inappropriate for two reasons.First, if we want to redue the dimensionality of the problem in the ontext of onsideringdi�erenes between groups, we should use anonial variates, whih are di�erent from prinipalomponents; anonial variates are losely related to MANOVA, anonial orrelation, and dis-riminant analysis (see Krzanowski, 1990, p. 291-300 and 370-385; Bernstein et al., 1988, h. 10;Digby & Kempton, 1987, pp. 75-77). Seond, when using PCA we would be mixing within andamong-individual ovariation in the response variables. However, it should be possible to useanonial variate analysis on the w-q variates (inluding randomization-based anonial variateanalysis �Manly, 1997, p. 274).
5.8 Plotting in ross-over designsPlotting is a key tool in statistial analysis and an help us spot patterns and problems in theoriginal data and the �tted models. We an plot the original data, plot some linear funtionsof the data, or make plots that are spei� for the types of analyses arried out (partiularlyhelpful to examine violations of model assumptions, suh as residual plots). I will brie�y reviewthe �rst two here.Initial plots of the data will help detet errors in the transription or reording of data, andwill give an idea of the results that ould be expeted. JK (p. 20) refer to subjet pro�le plotswhere, for eah sequene, the response of eah subjet is plotted over the di�erent treatmentperiods, and the responses of eah subjet are onneted with a line. These plots help identifyperiod and treatment e�ets, potential outliers, and variation within and among sequenes. Fordesigns with more than two treatments, it is onvenient to add treatment labels in the x-axis.In treatment by treatment satter-plots (SN, p. 188), we plot eah patient's values usingeah treatment response as a dimension.



134The response by patient satterplot (SN, p. 125 and 187) depits the response variable(y-axis) by the sequene, using the same symbol aross sequenes to identify treatments; allthe responses of a subjet are shown in the same vertial line (x-axis position). This plotonveys a lot of information: variation within-subjets, variation among sequenes, magnitudeof di�erenes between treatments, and possible di�erenes in treatment e�ets aross sequenes(e.g., treatment*period interation), as well as potential outliers (either a whole subjet orobservations within an otherwise non-outlying subjet). This plot and the subjet pro�les plotomplement eah other, as they onvey similar information in di�erent ways. In these plots,ovariates or other fators an be added by using symbols. Plots for time to event data arebased on the survival funtion and are shown in Feingold & Gillespie (1996). Non-metri dataare generally di�ult to plot onveniently, and tables are probably more useful (but see SN, p.188-190).The seond type of plots are those that depit some funtion of the data, suh as the linearontrasts. These plots are very useful at the initial and intermediate stages of formal analyses.For the 2x2 design, JK (p. 28-30) disuss a plot that helps understand the role of arry-over and treatment e�ets. In a satterplot, eah individual's sum over the two periodsis shown in the x-axis and eah individual's di�erene between the �rst and seond periodsin the y-axis; individuals from eah of the two sequenes are plotted with di�erent symbols,and the outermost points of eah sequene are joined (i.e., we draw the onvex hull of eahsequene group). If there are only strong treatment e�ets, we will see two non-overlappingurves that are separated in the vertial diretion; if there are arry-over e�ets, the separationwill be along the horizontal axis. This plot also gives visual information on the variabilityin eah sequene (for parametri analyses, variane should be the same in eah group). Thegroups-by-period plot (JK, p. 20) shows the group by period means for eah sequene,onneted by a segment. These are very similar to the usual interation plots in linear models.Plotting the linear ontrast by a ovariate an be partiularly helpful to understand the role ofontinuous ovariates. Miller (1999) has proposed two types of plots that help identify outliers



135and indiate whether representing di�erenes between samples by a single statisti (suh as themean) is appropriate; these plots allow us to examine subjet by treatment interations andhanges in arry-over e�et over time.Summary plots of results should avoid two potential pitfalls. First, if analyses have beennonparametri it is misleading to use plots that represent a mean and its standard error, asthese have no relationship with the atual analyses onduted (and ould suggest that the meanand s.e. are adequate haraterisations of the data distribution, whih they are not). Seond, inross-over trials the estimator is based on within-individual di�erenes, and the relevant soureof variane is the within-individual variability, not the among-individual variability. Thus, aplot of the overall mean of treatments A and B, eah with an standard error, would be oflittle use as the analyses were onduted using within individual di�erenes; moreover, thisplot an suggest no e�et even when there is a strong one. Instead, it is preferable to plotthe estimated treatment di�erene with its standard error (with no treatment di�erenes, theon�dene interval should over 0). If we need to present the estimates of the atual responseswith with some measure of variability, it is best if those treatment means are adjusted treatmentmeans (as obtained from, e.g., linear models after orreting for e�ets of period and other �xede�ets), and if a autionary statement is added to the �gure legend indiating that those meansand s.e. annot be used to ondut a visual test of the hypothesis.5.9 Sample size and missing dataDisussion of sample size and power is provided in SN (211-219), Hills & Armitage (1979), andEzzet & Whitehead (1992). Sample size alulations an be extremely ompliated exept forthe simplest designs, and when planning trials we would need information on varianes, whihis not always available before the trial starts.The onsequenes of missing data an be partiularly serious for the 2x2 design; the simplest



136strategy is to use only subjets without missing data, but other strategies are possible (JK, p.76-80). For other designs, the onsequenes of missing data are not neessarily that serious,and probably all the available data from every subjet should be used (see SN, p. 219-221; seealso Low et al., 1999 for disussion of robustness of ross-over designs to dropouts).It is important to understand what is the missing data mehanism (e.g., Diggle et al., 1994,h. 11; Albert, 1999). A ommon lassi�ation is based on Littell & Rubin (1987). Dataare missing ompletely at random (MCAR) if the missing mehanisms is independent of boththe observed and atual missing value; they are missing at random (MAR) when the missingmehanism is independent of the atual missing value but depend on observed data (e.g., ifit depends on previously observed values); and they are missing non-randomly (= informativemissing mehanism or non-ignorable missingness) when the missing mehanisms depends on thevalues of the missed observations. For instane, suppose we are measuring �ght duration in anexperiment where eah subjet is sheduled to be observed �ve times per day, but oasionallywe an not obtain omplete reords for eah individual. If there is a onstant probability thatwe annot �nd the subjet for the sheduled observation we have a MCAR mehanism. If,however, long previous �ghts make it more unlikely that we will able to �nd the subjet for thefollowing trial (e.g., following a long �ght an animal is more likely to move somewhere else),then we have a MAR mehanism. We will have non-ignorable missingness if the probabilitythat we observe a short �ght is smaller than that of observing a long �ght (i.e., the probabilityof reording a �ght inreases with �ght duration, the variable we are measuring).The statistial methods disussed above an aommodate MCAR data; some of them(e.g., linear mixed models, but not GEE) also aommodate MAR data; but most methods willbe biased with informative missing values (e.g., experiments where the probability of havingmissing data depend on the treatment applied). Appliation of multivariate/repeated measureswithin periods tehniques an be muh more ompliated in the presene of missing values orinomplete observations (see, e.g., Davis, 1991; Lahin, 1992; Palesh & Lahin, 1994).



1375.10 Conlusions
Cross-over designs an be very useful in many behavioural experiments (see DU-1); however,their analyses are more ompliated than those of parallel trials. When planning a ross-overtrial we should onsider both the design and analysis, as the type of response variable an a�etthe hoie of design. Cross-over designs will be muh easier to analyse if we an keep the designsimple, minimising nesting and rossing of among-subjet treatments (but if the setup doesinlude these fators, they should be inorporated in the analyses).

Analysis of ategorial data (speially ordered responses) an be ompliated with ross-overdesigns, and generally requires at least moderate sample sizes (≥10 individuals per sequenegroup); even with moderate sample size, power might be too low to detet small, but bio-logially relevant, di�erenes between treatments. Analysis of time to event data an also beunsatisfatory, but is easier if ensoring time is ommon for all individuals. More omplexdesigns, suh as those that inlude bloks and ovariates, an make analysis of ategorial andtime to event data very ompliated. Modifying the experimental protool might amelioratesome of these problems; for example, to avoid ensored data we might make observation pe-riods longer, and to eliminate ategories suh as "low perh", "medium height", "high perh"we might be able to atually measure perh height. In partiular, it is best to always obtaindata at as high a level as possible in the measurement hierarhy (i.e., as lose to interval aspossible), and to remember that degrading data into ategories suh as orderings or 0/1 willmake analyses more ompliated. Experiments with three or more treatments are inherentlymore ompliated to design and analyse, in partiular if nonparametri and robust methodswill be used. Experiments that measure multiple responses should use multivariate tehniques.Finally, how arry-over and period e�ets are dealt with should be made expliit.
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