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viAbstra
tAvoiding predators may 
on�i
t with territorial defense be
ause a hiding territorial residentis unable to monitor its territory or defend it from 
onspe
i�
 intrusions. With persistentintruders, the presen
e of an intruder in the near past 
an indi
ate an in
reased probabilityof future intrusions. Therefore, following a 
onspe
i�
 intrusion, territorial residents shouldminimize 
osts from future intrusions at the 
ost of higher predation risks. The main fo
us ofthis thesis is to investigate 
hanges in antipredator behavior following a 
onspe
i�
 intrusion.In the �rst 
hapter I examine the existen
e of e�e
ts of past 
onspe
i�
 intrusions on an-tipredator behavior and how these e�e
ts di�er from the 
hanges in antipredator behaviorrelated to the immediate (vs. past) presen
e of a 
onspe
i�
 intruder. I 
ondu
ted experimentswith males of the territorial lizard, Tropidurus hispidus, re
ording approa
h distan
e (distan
ebetween predator and prey when prey es
apes) and time to re-emerge from a refuge afterhiding. Past aggressive intera
tions a�e
ted antipredator behavior: lizards re-emerged sooner(
ompared to a 
ontrol) when the predator atta
ked 5 min after an aggressive en
ounter. If thepredator atta
ked while an aggressive en
ounter was ongoing, there was also a redu
tion in ap-proa
h distan
e. The results: (1) are 
onsistent with an e
onomi
 hypothesis that predi
ts thatT. hispidus in
ur greater predation risks to minimize future territorial intrusions; (2) show thate�e
ts of past and ongoing aggressive intera
tions are di�erent, 
onsistent with minimizationof present intrusion 
osts.In the se
ond 
hapter I investigate whether testosterone manipulations a�e
t antipredatorbehavior and the e�e
ts of past aggressive intera
tions. Elevated testosterone levels in lizardsresult in males that in
rease their allo
ation to territorial defense at the expense of other 
osts.Consequently, we expe
ted that elevated testosterone would: (1) in
rease exposure to preda-tion; (2) produ
e a disproportionate in
rease in exposure to predation following a past aggressiveintera
tion. We manipulated testosterone levels of male T. hispidus using sub
utaneous testos-terone implants. Our results provide strong eviden
e that past aggressive intera
tions result



viiin in
reased exposure to predation and that the type of �rst en
ounter (aggressive intera
tionwith a 
onspe
i�
 vs. 
ontrol presentation) had long-lasting e�e
ts on antipredator behavior.We found no eviden
e of di�eren
es in aggressive behavior related to hormonal treatment, ofan asso
iation between aggressive and antipredator behaviors, or of an in
rease in exposure topredation with in
reased testosterone level. The la
k of e�e
ts of testosterone on antipredatorbehavior 
ould be the 
onsequen
e of testosterone manipulations not altering aggressive behav-ior on males of this spe
ies, a pattern that might not be un
ommon in tropi
al vertebrates.In the third 
hapter I use a mathemati
al model to examine the e�e
ts that past 
onspe
i�
intrusions 
an have on antipredator behavior, when intruders are persistent, fo
using mainlyon the e�e
ts of rate of intrusion of other 
onspe
i�
s, the behavior of the reintruder, andthe timing of the predator's atta
k. Past aggressive intrusions rarely a�e
t time to hide: theoptimal behavior is to hide as soon as the predator initiates its atta
k. Time to reemerge isstrongly a�e
ted by past aggressive intera
tions (animals reemerge sooner from a refuge), andthese e�e
ts depend on the time of the predator's atta
k, the reintruder's pattern of return,and the intrusion rates of other 
onspe
i�
s. Di�eren
es between my �ndings and those fromprevious studies suggest that the trade-o� between antipredator behavior and territorial defense
an involve di�erent types of 
osts than the trade-o� antipredator behavior-foraging.Together, these 
hapters are relevant for studies of the 
hanges in antipredator behavior dueto 
hanges in the so
ial environment, and they establish a 
onne
tion between population levelpro
esses, mating system and defensibility of resour
es, and antipredator behavior. These three
hapters 
an have empiri
al and theoreti
al relevan
e for studies of the 
osts, (
o)evolution, ande
ologi
al 
onsequen
es of territorial and antipredator strategies.In the �rst two 
hapters I use 
ross-over designs extensively. These types of designs arefrequently used in animal behavior studies as they allow experiments with relatively smallnumbers of subje
ts that nonetheless a
hieve high statisti
al power by using ea
h subje
t asits own 
ontrol. However, 
ross-over trials are often analyzed in
orre
tly in the behavioral



viiiliterature, and many statisti
s textbooks used by behaviorist either do not mention them or
ontain potentially misleading advi
e. Moreover, some of my experiments involve data, su
h asmultivariate responses and 
ensored observations, whi
h although 
ommon in many behavioralexperiments are not generally 
onsidered in detail in statisti
al textbooks on 
ross-over trials.The last two 
hapters address these issues.In 
hapter four I review the use of 
ross-over trials in the behavioral literature, and I explainwhy the traditional analyses (based on paired t-tests) are inappropriate, the problems asso
iatedwith 
arry-over e�e
ts, and the types of 
ross-over designs that are potentially most useful forbehaviorists. In the �fth 
hapter I review methods of analyses of 
ross-over trials in the 
ontextof animal behavior experiments. I group methods of analysis a

ording to the type of responsevariable: non-parametri
 and robust methods for metri
 responses, parametri
 methods formetri
 responses �linear mixed-e�e
ts models�, models for 
ategori
al responses both non-parametri
 and parametri
 �extensions of generalized linear models�, 
ensored observations�survival analysis�, and multivariate responses. Within-individual 
ontrasts are explained indetail as they are the basis of many di�erent methods, from non-parametri
 to multivariateand survival-based models, and they o�er a useful framework for extending the analysis of datafrom 
ross-over trials to situation where robust methods might be needed (e.g., permutationtests of 
ensored multivariate responses). In this 
hapter I also dis
uss some types of plot thatare spe
i�
 and parti
ularly useful for 
ross-over trials. If design, wash-out periods, and type ofresponse are given the appropriate 
onsideration, 
ross-over designs 
an be very powerful toolsfor behaviorists whenever obtaining new subje
ts is more 
ostly than repeatedly testing thesame individual, and thus in parti
ular for resear
hers working in the lab or in �eld en
losureswhere animals require lengthy training or habituation.
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1Chapter 1
Antipredator behaviour 
hangesfollowing an aggressive en
ounter inthe lizard Tropidurus hispidus

This 
hapter has been published in thePro
eedings of the Royal So
iety of London, Series B, 1999, 266, 2457-24641.1 Abstra
tAvoiding predators may 
on�i
t with territorial defen
e be
ause a hiding territorial resident isunable to monitor its territory or defend it from 
onspe
i�
 intrusions. With persistent intrud-ers, the presen
e of an intruder in the near past 
an indi
ate an in
reased probability of futureintrusions. Therefore, following a 
onspe
i�
 intrusion, territorial residents should minimise
osts from future intrusions at the 
ost of higher predation risks. I 
ondu
ted experimentswith males of the territorial lizard, Tropidurus hispidus, re
ording approa
h distan
e (distan
ebetween predator and prey when prey es
apes) and time to re-emerge from a refuge after hid-ing. Past aggressive intera
tions a�e
ted antipredator behaviour: lizards re-emerged sooner(
ompared to a 
ontrol) when the predator atta
ked 5 min after an aggressive en
ounter. Ifthe predator atta
ked while an aggressive en
ounter was ongoing, there was also a redu
tionin approa
h distan
e. The results: a) are 
onsistent with an e
onomi
 hypothesis that pre-



2di
ts that T. hispidus in
ur greater predation risks to minimise future territorial intrusions;b) show that e�e
ts of past and ongoing aggressive intera
tions are di�erent, 
onsistent withminimisation of present intrusion 
osts. These results are relevant for studies of the 
hanges inaggressive behaviour due to 
hanges in the so
ial environment, and for studies of the 
osts and(
o)evolution of aggressive and antipredator strategies.1.2 Introdu
tionOptimal antipredator behaviour should be the result of weighting the risk of predation againstthe bene�ts from other a
tivities. Experimental and theoreti
al work, fo
used mainly on thetrade-o� between foraging and predator avoidan
e, has shown that 
hanges in the terms of thetrade-o� between mortality risk from predation and 
osts of hiding/es
aping from predatorswill 
hange the behavioural optimum (see Clark 1994; Ydenberg & Dill 1986; reviews in Lima& Dill 1990; Lima 1998). Thus, when the 
osts of interrupting other a
tivities in
rease (e.g.,foraging at a better pat
h or 
onsuming a larger prey), animals adopt behavioural strategies thatlead to in
reases in risk of mortality from predation (e.g., delaying es
ape from a predator orreemerging sooner from a refuge). In territorial animals, territorial defen
e 
an be an importantdeterminant of reprodu
tive su

ess. However, 
ompared to the antipredator-foraging trade-o�, there is little information about trade-o�s between antipredator behaviour and territorialdefen
e. The general aim of this study was to examine how predation-related risk takingbehaviour 
hanges as a 
onsequen
e of past and present aggressive intera
tions that in
reaseterritorial 
osts of hiding; the two hypotheses tested predi
t in
reased exposure to predationas a 
onsequen
e of in
reased 
osts of hiding due to past (�rst hypothesis) or present (se
ondhypothesis) territorial 
onspe
i�
 intrusions.A predatory atta
k 
reates 
on�i
ting demands on a territorial animal: hiding de
reases riskof mortality from predation, but minimises the 
han
es of dete
ting and repelling a 
onspe
i�
intruder (i.e., in
reases the territorial 
osts of hiding). These territorial 
osts of hiding 
an



3be spe
ially high following a 
onspe
i�
 intrusion: in some territorial spe
ies intruders obtainor enlarge territories by persistently intruding into the territories of settled animals (reviewin Stamps & Krishnan 1995, 1998; e.g., lizard Anolis aeneus: Stamps & Krishnan 1995; red-winged bla
kbirds: Yasukawa 1979; purple martins: Stut
hbury 1991; song sparrows: Ar
ese1987). Thus, the o

urren
e of one aggressive en
ounter 
an inform a territorial resident thatsubsequent territorial intrusions are likely.The �rst hypothesis tested in this study states that a past territorial intrusion 
hanges theterms of the trade-o� between predation and vigilan
e by in
reasing the territorial 
osts ofhiding, and thus alters the behavioural optimum. Therefore, if a predator atta
ks soon after anaggressive intera
tion is over, a territorial resident should modify its behaviour to de
rease the
han
es of territorial intrusions at the 
ost of in
reased predation risks (hereafter 
alled extendede�e
ts of aggression on antipredator behaviour). The predi
tions from this hypothesis are that,following an aggressive en
ounter, a territorial resident will show a de
rease in the distan
e atwhi
h it �ees from a predator and/or a de
rease in the time till it re-emerges from a refugeafter the predator atta
ks. These predi
tions were tested in Experiment 1 using a human asa simulated predator and 
omparing antipredator behaviour in males of the lizard Tropidurushispidus 5 min after the end of an aggressive intera
tion to antipredator behaviour 5 min aftera 
ontrol presentation.The antipredator behaviour 
onsequen
es of a 
hange in the territorial 
osts of hiding 
anbe further studied by examining the di�eren
e between the e�e
ts of an aggressive en
ounterthat has �nished (extended e�e
ts) and an ongoing aggressive intera
tion (immediate e�e
ts).In an ongoing aggressive en
ounter the intruder is in the territory when the predator atta
ks,and hiding 
ould result in mu
h larger intrusion 
osts, spe
ially if the approa
hing predator isnot an atta
king one. The se
ond hypothesis tested in this paper states that 
urrent presen
e ofan intruder in
reases territorial 
osts of hiding with respe
t to past presen
e of an intruder, andthus territorial residents should show further in
reases in their exposure to predation when the



4predator approa
hes during an ongoing aggressive en
ounter vs. sometime after the end of theaggressive intera
tion. This hypothesis predi
ts that immediate e�e
ts will result in a de
reasein the distan
e at whi
h the territorial resident �ees from a predator and/or a de
rease in thetime till it re-emerges from a refuge after the predator atta
ks 
ompared to extended e�e
ts.I examined this hypothesis in Experiment 2 by 
omparing antipredator behaviour of male T.hispidus during an ongoing aggressive en
ounter to antipredator behaviour 5 min after the endof the aggressive intera
tion.1.3 Methods1.3.1 Animals and study siteExperiments (Table 1.1, p. 8) were 
ondu
ted at the Nisia Floresta Forest Experimental Sta-tion, EFLEX-IBAMA, (6◦ 5' S, 35◦ 12' W), lo
ated 45 Km from Natal (Northeastern Brazil);Experiment 1 (hereafter Exp. 1) was 
ondu
ted between 27-April and 22-May, 1997, and Ex-periment 2 (hereafter Exp. 2) between 29-November-1997 and 13-January-1998. I used adultmales of the lizard Tropidurus hispidus (snout-vent length [SVL℄ 70-130 mm), a widespread,diurnal, sit-and-wait iguanine lizard in South Ameri
a (Rodrigues 1987; Vitt 1995). In the areastudied both male and females were territorial through the year, and en
ounters among malesthat developed into es
alated �ghts tended to repeat themselves (with the same 
ontenders) insubsequent hours/days (pers. obs.).Experimental subje
ts were adult males (SVL≥ 100 mm), 
aptured in villages 
lose to thestation, that had not been used in other experiments, or used before as intruders, or laterused as intruders in the same en
losure. Intruders (adult males SVL > 90 mm) were used amaximum of three times and were never wounded by the experimental pro
edure. The sameexperimental animal was not exposed to the same intruder more than on
e. Intruders wereassigned at random to experimental animals, but no intruder 
ould be used twi
e in the same



5en
losure and for the same treatment (in Exp. 2). Moreover, for ea
h experimental animal inExp. 2, none of the two treatments 
ould be applied using either the two largest or the twosmallest intruders, to ensure adequate interspersion with respe
t to intruders' sizes (this is notappli
able to Exp. 1 where ea
h experimental animal was subje
t to only one intruder). Allanimals were released in the area of 
apture at the end of testing.1.3.2 En
losures and animal husbandryI used en
losures to minimise variation in behaviour. En
losures were lo
ated in open pat
hesin plantation areas and measured 3.6 to 4.9 m2 (2 to 2.5 by 2 m) in Exp. 1 and 4 m2 (2 by 2m) in Exp. 2. En
losures were 1 m high, 
onstru
ted from transparent plasti
, sunk 15 
m intothe ground, atta
hed to a wood frame. Ea
h en
losure 
ontained two refuges made with bri
ksand roof tiles that o�ered prote
tion and were readily used by the lizards as hiding pla
es.En
losures were partially 
overed from above to provide shade during the 
entral hours of theday. En
losures also in
luded one or two females (and in some 
ases one small male; see Table1.1 (p. 8)). All females were randomly assigned to en
losures/males, ex
ept that females' SVLhad to be at least 5 mm less than the males' (in the �eld, males were asso
iated with smallerfemales).I pla
ed a blind 7.5 m away from the en
losure. Using suspended �shing lines, I 
ould movean intruder from behind the blind to inside the en
losure and retrieve it at the end of the trial,without my ever leaving the blind. When I approa
hed the en
losures for feeding or smallrepairs I used a pon
ho whi
h 
ontrasted with the 
lothes used during tests (white pants andT-shirt).En
losures were more than 15 meters apart with dense and tall intervening vegetationensuring no visual 
onta
t between them, and were pla
ed in areas where, during a period often months, I only observed four free-ranging adult T. hispidus (one male, three females). Thus,intera
tions with naturally-o

urring 
onspe
i�
s should have been extremely rare.



6Lizards were fed every two to three days a diet of 
ri
kets, mealworms, �y maggots, roa
hesand beetles, and a mixture of egg, powdered milk, and fruit. In Exp. 1 water was availablenaturally (rainy season) and animals were fed one or two days before testing started, andwere not fed during the days of testing. In Exp. 2 (dry season), en
losures had several water
ontainers, and animals were fed one or two days pre
eding testing, and early on the third dayor, after testing, on the se
ond day. En
losures were 
leaned of fae
al boli before introdu
ingnew experimental animals.Animals in the en
losures displayed normal antipredator behaviour: T. hispidus uses refugesfor hiding when a predator atta
ks (Vitt 1995) and in the study area I observed wild T. hispidusrun into refuges when atta
ked by the predators dogs, 
ats, 
hi
kens, and 
ommon marmosets(Callithrix ja

hus), and when potential predators (e.g., 
rane hawk, Geranospiza 
aerules
ens,
ara
ara, Polyborus plan
us) �ew over. Moreover, in this region of Brazil, T. hispidus are veryfrequently killed by humans (parti
ularly 
hildren). T. hispidus in the en
losures not onlysought refuge when approa
hed by a human, but also when 
rane hawks and 
ara
aras �ewover.Animals in the en
losures also displayed normal aggressive and mating behaviour: malesatta
ked intruders, and 
ourted and mated with females; more than nine females laid eggs andat least six 
lut
hes hat
hed su

essfully in the en
losures. Body mass did not 
hange betweenthe time the animals were introdu
ed and the time they were removed from the en
losures (Exp.1: mean 
hange [�nal-initial mass℄ ± s.e.= −0.27 ± 0.409 g, paired t14 = 0.67, p = 0.512; Exp.2: mean 
hange ± s.e.= 1.33 ± 0.736 g, paired t11 = 1.89, p = 0.085). While in the en
losures,lizards were rarely approa
hed by humans (ex
ept myself).1.3.3 Experimental design and antipredator testsIn both experiments, animals were tested several days (Table 1.1, p. 8) after being introdu
edin an en
losure to ensure that animals were used to the en
losures. I used 
ross-over designs



7(Jones & Kenward 1989): ea
h animal was subje
t to two treatments through time, so thattreatment di�eren
es are estimated using within-animal 
omparisons. Ea
h animal re
eivedonly one treatment per day, in the sequen
es shown in Table 1.1 (p. 8), and was tested insu

essive days and at about the same hour as the pre
eding day. Thus, the testing phaselasted two days for ea
h animal in Exp. 1, and four days for ea
h animal in Exp. 2. Bothexperiments involved presenting a male lizard with a stimulus (intruder or 
ontrol) and, sometime later, measuring antipredator behaviour by simulating a predatory atta
k. A test (stimuluspresentation + antipredator test) lasted approximately 40 min per animal.In Exp. 1 I measured antipredator behaviour 5 min after an intruder en
ounter (E: extendede�e
ts) and 5 min after a 
ontrol (C) presentation. In Exp. 2 I measured antipredator behaviourduring an ongoing aggressive intera
tion with an intruder (I: immediate e�e
ts) and 5 min afterthe end of the intera
tion (E: extended e�e
ts). Details of the experiments are shown in Table1.1 (p. 8). When es
aping predators T. hispidus need to de
ide when to �ee from the predatorand, after hiding, when to re-emerge from the refuge; thus, the variables measured were 
hosento re�e
t these two de
issions and are explained in Table 1.2 (p. 9). To run the antipredatortest, I positioned myself 13 m away from the en
losure (4.5 m behind the blind) and approa
hedthe lizard dire
tly at a moderate speed (Exp. 1: mean = 0.42 m/s, s.d. = 0.056; Exp. 2: mean= 0.46 m/s, s.d. = 0.047). Whenever the lizard moved, I stopped for 15 se
 and re
orded myposition, and then approa
hed again. The approa
h-and-stop 
ontinued until the lizard hid,when I moved to a spot at a �xed distan
e from the en
losure (Exp. 1, 2 m; Exp. 2, 4.5 m), andremained motionless for 20 min. I re
orded my movements and the lizard's behaviours usingan HP-48GX 
al
ulator for 
ontinuous event re
ording. All tests were 
ondu
ted when lizardswere a
tive and air temperature (shaded bulb at 1.5 m) was higher than 26 ◦C.Animals were habituated to the movement of the intruder delivery system using a toothpaste
ontainer (to prevent habituation to the 
ontrol) with whi
h I mimi
ked the movements I woulduse during the intruder and 
ontrol presentations. Lizards were subje
t to 4 to 10 habituation



8Table 1.1: Experiments 1 and 2: methods.Exp. Treatments Sequen
es 1 Subje
ts1 Extended (E):- Introdu
ed intruder male.- Left in en
losure max. 15 min.- On
e atta
ked, left for 3 min and untilthree atta
ks.- Remove intruder.- Antipredator test; time end of in-truder presentation to antipredatortest: 5 min.Control (C):- Introdu
ed wood sti
k (≃
olour andsize of adult male).- Left in en
losure for 3 min 45 se
2.- Remove 
ontrol.- Antipredator test; time end of 
on-trol presentation to antipredator test:5 min.

EC,CE - Three bat
hes of six en
losures ea
h.One experimental male per en
losure.- Ea
h en
losure also two females (fouren
losures) or one female and one smallmale (two en
losures)3. Females andsmall males the same in ea
h en
losurethroughout the experiment.- Experimental males assigned ran-domly to en
losures.- Three males in ea
h bat
h assignedrandomly to ea
h sequen
e.- Males tested after 6 to 7 days in en-
losures.- Sample size: 15 males4.2 Extended (E):- Introdu
ed intruder male.- Left in en
losure max. 15 min.- On
e atta
ked, left for 2 min (and aminimum of four atta
ks) or until sixatta
ks, whi
hever 
ame �rst.- Remove intruder.- Antipredator test; time end of in-truder presentation to antipredatortest: 5 min.Immediate (I):- Introdu
ed intruder male.- Left in en
losure max. 15 min.- On
e atta
ked, left for 2 min (and aminimum of four atta
ks) or until sixatta
ks, whi
hever 
ame �rst.- Antipredator test; i.e., intruder stillwithin en
losure.- Intruder removed immediately afterlizard hid5.

EIIE,IEEI - Six di�erent en
losures used repeat-edly, no bat
hes .- One female and one experimen-tal male introdu
ed simultaneously inea
h en
losure (i.e., di�erent femalesfor ea
h male).- Males assigned randomly to en
lo-sures.- First animal tested assigned sequen
eat random; su

essive animals assignedimmediately (before testing) alternat-ing sequen
es.- Males tested when habituated (after5 to 12 days in en
losures).- Sample size: 12 males6.
1A sequen
e is the order in whi
h the within-individual treatments are applied. An animal is assigned to asequen
e, and treatments applied in the spe
i�ed order (e.g., for sequen
e EC in Experiment 1 �rst testing dayis E, se
ond testing day is C). Therefore, Experiment 1 
onsisted of 2 periods and Experiment 2 of 4 periods,where a period is ea
h one of the testing days.
2Median time that an intruder spent in en
losure in preliminary trials.
3In the �eld, a male's territory overlaps the territory of one or more females and often the home range of one ormore small males. I never observed aggressive intera
tions between the experimental male and the small male.
4One of the en
losures 
ould only be used during the �rst week and one animal was ex
luded from the studybe
ause it was hiding 
ontinuously during the day of testing.
5I obtained data for all four periods for all animals ex
ept two, one from ea
h of the sequen
es.
6In the I-treatment removing the intruder from the en
losure took 1 min and involved some movement of theintruder-delivery-system. To 
ontrol for these e�e
ts, in the E-treatment after the animal hid I approa
hed theen
losure and remained next to it for 1 min, while moving the intruder delivery system to mimi
 the e�e
ts ofremoving an intruder.



9Table 1.2: Response variables used to measure antipredator behaviour1.Variable Des
riptionApproa
h Distan
e Distan
e between observer and the lizard when the lizard �rstinitiated �ight.Minimum Distan
e Minimum distan
e between the observer and the lizard before itinitiated �ight; the same as Approa
h Distan
e if there is onlyone run.Time to Reemerge Time sin
e the lizard hid until it re-emerged (at least all thehead was visible out of the refuge).Time to Full Exposure Time sin
e the lizard hid until it was fully exposed (all thelateral surfa
e of the body �not in
luding tail� was visible outthe refuge). Lizards in full exposure were generally more than one bodylength away from the refuge, they were visible (from many sight points) toboth other lizards and potential predators, and were able to monitor theirwhole territory.
1 The predi
tions tested refer to in
reases in predation risk that result from behavioural 
hanges of the prey. AsI 
ould not measure predation risk dire
tly I used the four response variables as proxies (and assumed that therisk of being killed is a de
reasing fun
tion of ea
h of the response variables). Approa
h Distan
e and MinimumDistan
e are proxies for risk when predator atta
ks; Time to Reemerge and Time to Full Exposure are proxiesfor risk at re-emergen
e. Thus, the four variables belong to two groups: initial atta
k and reemergen
e; resultswithin ea
h pair of variables should be 
onsistent (i.e., either none of the two variables will depart from the nullhypothesis, or the two variables will depart from it in the same dire
tion).trials, and were 
onsidered habituated if they did not hide during two su

essive habituationtrials. In Exp. 2 I initially habituated some animals by hanging soda bottles for 24 to 48 hnext to the en
losures (using the intruder delivery system); later, these animals were 
he
kedfor habituation using the toothpaste 
ontainer.
1.3.4 Statisti
al analysesIn Exp. 1 I analysed Approa
h Distan
e and Minimum Distan
e (Table 1.2 (p. 9)) with linearmixed-e�e
ts models, using the parameterisation in Jones & Kenward (1989, p. 30), but also



10in
luding several 
ovariates and random e�e
ts. The full model examined was:
yijklm = µ + λi + βXj + αk + cj|k,β + wl + sjl + πm + τn[i,m]

+(τβ)nXj + (τα)kn + (αβ)kXj + (ταβ)knXj + eijlm, (1.1)where in the �xed e�e
ts part µ is the inter
ept, λ is the 
arry-over (whi
h in this parameter-isation is equivalent to a sequen
e e�e
t), β is the 
oe�
ient for en
losure area (X), α is typeof en
losure (two females or one female and one small male), π is the period e�e
t (a periodis ea
h one of the o

asions on whi
h a treatment is applied, for example �rst or se
ond day),
τ is the dire
t treatment e�e
t, and the terms in parentheses are intera
tions. In the randome�e
ts part 
, w, and s are the random e�e
ts of en
losure, week, and individual respe
tively,and e are the within individual errors. All random e�e
ts are normal and independent of ea
hother. When analysing Approa
h Distan
e I in
luded my approa
h speed and the intera
tionapproa
h speed* treatment. For the univariate analyses of Exp. 2 (all four variables �Table 1.2,p. 9) I used the linear mixed model

yijkm = µ + ξi + cj + (ξc)ij + sijk + πm + τn[i,m] + λn[i,m−1] + eijkm (1.2)where all terms are as in the model for Exp. 1, ex
ept for ξ whi
h denotes sequen
e (sequen
eis the order in whi
h the within-individual treatments are applied). Model �tting pro
eeded asin Exp. 1, ex
ept: a) I modelled the varian
e-
ovarian
e matrix of the within-individual errorse (examining the �t of 
ompound-symmetri
, autoregressive, general �unstru
tured positivede�nite�, and heteros
edasti
 error stru
tures), be
ause the data are repeated (>2) measures ofthe same individual; b) if period (as 
ategori
al variable) was left in the model, I attempted tosimplify this stru
ture by �tting linear and quadrati
 terms of period as a 
ontinuous variable.To �t these models I pro
eeded as explained in Pinheiro & Bates (2000), Diggle et al. (1994),and Littell et al. (1996).



11In Exp. 1, for Time to Reemerge and Time to Full Exposure, nine and �ve, respe
tively,out of 30 (i.e., about 1/6 and 1/3) of the observations were right-
ensored (i.e., at 20 min thelizards still had not re-emerged or fully re-emerged), and thus require the use of te
hniquesfor 
ensored data. I used the (�rst) approa
h suggested in Feingold & Gillespie (1996) afterlog-ranking (e.g., Lawless 1982, p. 420) the observations. To obtain p-values I used systemati
permutation tests (Edgington 1995). In Exp. 2 Time to Reemerge and Time to Full Exposurehad only a few right 
ensored observations (two and seven, respe
tively, out of 46). Althoughresidual plots did not indi
ate any problem with the models, I also analysed these data withthe method of Feingold & Gillespie (1996), analogous to Exp. 1.
In both experiments I measured four response variables (Table 1.2, p. 9). To prevent in-ferential errors from four univariate tests of potentially 
orrelated response variables, and totest for overall di�eren
es in antipredator behaviour taking into a

ount the 
ovariation amongresponse variables, I used the multivariate permutation test for 
ross-over designs of Johnson& Mer
ante (1996). To give equal weights to all variables I s
aled them to a mean of zeroand varian
e of one before 
omputing within-subje
t 
ontrasts. (Simulations [Díaz-Uriarte &Nordheim, in prep.℄ indi
ate that the Type I error rate of the multivariate test with log-ranked
ensored data is the nominal one). I obtained the p-value for this test using systemati
 datapermutation.
Permutation and multivariate tests were performed with 
ode written in SPlus v. 3.3 (Sta-tisti
al S
ien
es 1995). For Exp. 1, in all permutation tests animals were reassigned to sequen
esonly within bat
h; for weeks two and three the permutation was 
onditional on the pattern ofmissing data. Mixed models were �tted using the SPlus library nlme (Pinheiro & Bates 2000)and SAS's PROC MIXED (Littell et al. 1996). All p-values are two-sided.



121.4 Results1.4.1 Experiment 1: extended e�e
ts of aggression on antipredator be-haviourThe multivariate test showed strong overall eviden
e of di�eren
es between intruder and 
ontrolpresentation (p = 0.005). This overall di�eren
e is the result of di�eren
es between 
ontrol andextended 
onditions in Time to Reemerge and Time to Full Exposure.There was eviden
e of period e�e
ts for Time to Full Exposure (p = 0.0408 in the se
ondday, lizards re-emerged fully sooner, suggesting habituation). More importantly, for both Time
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Figure 1.1: Experiment 1, (a) Time to Reemerge and (b) Time to Full Exposure. Survival
urves (based on the Kaplan-Meier estimator of the survival fun
tion). The y-axis 
an beinterpreted as (a) "Probability of not having re-emerged" and (b) "Probability of not havingfully re-emerged." The 
ross denotes 
ensoring. These �gures do not take into a

ount thatmeasures for the same individual are potentially 
orrelated and that there are two distin
tsequen
es; they should not be used dire
tly for hypothesis testing. P-values for treatmente�e
ts (analysis following Feingold & Gillespie, 1996) are 0.0025 and 0.0058, respe
tively.



13to Reemerge and Time to Full Exposure, lizards re-emerged sooner if they had been in anaggressive en
ounter instead of given a 
ontrol treatment (Fig. 1.1, p. 12; p = 0.0025 and
0.0058 for Time to Reemerge and Time to Full Exposure, respe
tively). Thus, the results forTime to Reemerge and Time to Full Exposure are 
onsistent and in the dire
tion predi
ted bythe �rst hypothesis. Analyses using mixed-e�e
ts models yielded the same qualitative results.None of the analyses for any of the variables showed eviden
e of 
arry-over e�e
ts (p > 0.4).There were no di�eren
es between 
ontrol and extended treatment for (log of) MinimumDistan
e. For (square root of) Approa
h Distan
e I found a signi�
ant intera
tion betweentreatment and en
losure area (F1,13 = 12.86, p = 0.0033): Approa
h Distan
e in
reased witharea in the 
ontrol treatment, but not in the extended treatment (from a reparameterisedmodel, regression 
oe�
ients for 
ontrol and intruder are 1.03 and -0.385, respe
tively; s.e.=0.414; t18.6 = 2.48 and −0.93, p = 0.0227 and 0.3654). There was weak eviden
e (F1,12 = 4.51,
p = 0.0552) for a main e�e
t of type of en
losure: approa
h distan
e was larger in en
losureswith two females than in en
losures with one female and one small male (ba
k-transformed leastsquares means are 7.4 and 4.11 m respe
tively). Although the speed of my approa
h did notdi�er between treatments (mean di�eren
e intruder-
ontrol (s.e. = 0.018 ± 0.021 m/s, paired
t13 = −0.8675, p = 0.401), I in
luded my approa
h speed in the models for Approa
h Distan
e;neither the main e�e
t nor its intera
tion with treatment were signi�
ant (p > 0.3).1.4.2 Experiment 2: Di�eren
es between extended and immediate e�e
ts.The multivariate test showed strong eviden
e of overall di�eren
es between extended and imme-diate e�e
ts (p = 0.0130). This overall di�eren
e was due to di�eren
es in Approa
h Distan
eand Minimum Distan
e.Time to Reemerge and Time to Full Exposure did not di�er between extended and immedi-ate treatments. For (log of) Time to Full Exposure animals re-emerged sooner in later periodsof testing: the �nal model in
luded only a linear e�e
t of period (F1,33.2 = 12.41, p = 0.0013;
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e. Ba
k-transformed adjusted means( one s.e. This �gure should not be used for hypothesis testing. P-values for treatment e�e
ts(from mixed model) are 0.0240 and 0.0236 for Approa
h and Minimum distan
es, respe
tively.regression 
oe�
ient ± s.e. = -0.254 (± 0.072), suggesting habituation. Analyses with Feingold& Gillespie's (1996) method also indi
ated no treatment e�e
ts.Approa
h Distan
e and Minimum Distan
e di�ered between extended and immediate treat-ments. For (log of) Minimum Distan
e there were e�e
ts of both treatment and period; the �nalmodel in
luded a quadrati
 term for Period (F1,20.9 = 6.42, p = 0.0194; 
oe�
ient for linearterm = 0.401, 
oe�
ient for quadrati
 term = -0.123) and a term for treatment (F1,4.81 = 10.68,
p = 0.0236). As period of testing progressed, Minimum Distan
e de
reased, suggesting habitua-tion; more importantly, Minimum Distan
e in the immediate treatment was shorter than in theextended treatment (Fig. 1.2, p. 14). For Approa
h Distan
e there was only an e�e
t of treat-ment (F1,30.2 = 5.65, p = 0.0240). There was a 7% di�eren
e in my approa
h speed betweentreatments (mean speeds for extended and immediate were 0.442 m/s and 0.473 m/s, respe
-tively; F1,29.5 = 5.82, p = 0.0223, from a mixed model using lizard as random e�e
t). However,neither the intera
tion of approa
h speed with treatment, nor the main e�e
t of approa
h speedhad any signi�
ant e�e
t on Approa
h Distan
e (intera
tion: F1,17.6 = 1.04, p = 0.3216; main



15e�e
t: F1,8.42 = 0.7, p = 0.6143). In summary, the results for both Minimum and Approa
hDistan
e are 
onsistent and in the dire
tion predi
ted by the se
ond hypothesis: lizards allowedthe potential predator to approa
h 
loser when they were engaged in an ongoing �ght with a
onspe
i�
 intruder (Fig. 1.2, p. 14).A possible explanation of the di�eren
es in Approa
h and Minimum distan
es are dilutione�e
ts (see dis
ussion). In Experiment 2 I also re
orded whether the female was out of therefuge. If dilution e�e
ts are important, experimental lizards should show shorter Approa
h orMinimum distan
es when the female was out of the refuge. I 
ompared the e�e
t of a femaleout on Approa
h and Minimum distan
es for the extended treatment. I also reanalysed the�nal models for Approa
h Distan
e and Minimum Distan
e, allowing for the e�e
t of femalepresen
e/absen
e to di�er between treatments. In no 
ase was the presen
e of the femalesigni�
ant (all p > 0.15).No experiment 
ompared immediate e�e
ts with a 
ontrol. However, if we assume that theanimals from Experiment 2 would have shown di�eren
es between extended and 
ontrol in thesame dire
tion as animals from Experiment 1 did, we 
an summarise the results from bothexperiments together as shown in Fig. 1.3 (p. 16).1.5 Dis
ussionPast aggressive intera
tions (Experiment 1) de
reased the amount of time male T. hispidusspent hiding after a simulated predatory atta
k; when the predator atta
ked during an ongoingaggressive en
ounter (Experiment 2), lizards also allowed the predator to approa
h 
loser (Fig.1.3, p. 16). These results show: a) the existen
e of extended e�e
ts of aggressive behaviouron antipredator behaviour; b) that extended e�e
ts di�er from immediate ones. The resultsare 
onsistent with the two e
onomi
 (adaptive) hypotheses stated in the introdu
tion: a)past presen
e of an intruder 
an indi
ate an in
rease in the probability of future intrusions,
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hDistan
e and Time to Reemerge. I 
al
ulated "% of Control Value" as100* Adjusted mean for experimental 
onditionAdjusted mean for 
ontrol .and therefore if a predator atta
ks soon after an aggressive intera
tion is over, a territorialresident should modify its behaviour to de
rease the 
han
es of territorial intrusions at the 
ostof in
reased predation risks, and b) 
urrent presen
e of an intruder in
reases territorial 
ostsof hiding with respe
t to past presen
e of an intruder, and thus territorial residents shouldshow further in
reases in their exposure to predation when the predator approa
hes during anaggressive en
ounter.Extended e�e
ts of aggression on antipredator behaviour (Experiment 1) have not beenreported before, but the in
rease in predation exposure when the lizards were involved in a�ght 5 min before the atta
k of the predator is 
onsistent with e
onomi
 models of antipredatorbehaviour (Ydenberg & Dill 1986; Clark 1994). The results indi
ate that extended e�e
ts a�e
tmainly re-emergen
e time, not approa
h distan
es. A predatory atta
k is generally a fast eventand the rate of in
rease of the ability to monitor the territory by delaying �ight is probablysmall 
ompared to the rate of in
rease of mortality risk. Thus, extended e�e
ts on approa
hdistan
es are likely to be non-existent or di�
ult to dete
t when present. In 
ontrast, 
hanges



17in re-emergen
e 
an result in in
reased ability to monitor the territory without large in
reasesin mortality risk.The immediate e�e
ts (Experiment 2) are 
onsistent with those observed by Jakobsson etal. (1995) in both the 
i
hlid, Nanna
ara anomala, and the warbler, Phyllos
opus tro
hilus,where animals engaged in an aggressive intera
tion allow a predator to approa
h 
loser thananimals exposed to a 
ontrol stimulus (see also Bri
k, 1998). The data presented here also showthat immediate e�e
ts resulted in a de
rease in time to reemerge (with respe
t to a 
ontrol).However, the immediate e�e
ts did not result in further de
reases in times to reemerge 
omparedto the extended e�e
ts, despite the potentially larger intrussion 
osts in the immediate 
ondition(see Introdu
tion).In general we should expe
t di�erent 
omponents of the antipredator behaviour to be dif-ferentially a�e
ted by aggressive intera
tions, as hiding qui
kly 
an have very di�erent 
on-sequen
es in terms of mortality from predation and intruder dete
tion than re-emerging late.These results emphasise the need of measuring the 
omponents of the antipredator strategythat best 
hara
terise the key behavioural de
isions involved in predator avoidan
e (e.g., Lima& Dill 1990) and intruder dete
tion.The immediate e�e
ts on Approa
h and Minimum Distan
e (Experiment 2) 
ould be ex-plained by the non-adaptive �sensory limitation hypothesis:� an animal involved in a �ght mightbe unable to dete
t a predator as fast as an animal that is not involved in a �ght (e.g., Bernays& W
islo 1994; Milinski 1984). Sensory limitation seems to be the me
hanism invoked by Bri
k(1998) and by Jakobsson et al. (1995) to explain the de
rease in approa
h distan
e during in-traspe
i�
 �ghts in both warblers and 
i
hlids. In its most extreme form, the sensory limitationhypothesis predi
ts that an animal will initiate es
ape as soon as the predator is dete
ted. In
ontrast, the e
onomi
 hypothesis emphasises the de
ision 
omponent (Ydenberg & Dill 1986):the de
rease in approa
h distan
e in the immediate treatment would be the result of a 
hangein the per
eived 
ost of hiding and not of a de
rease in the ability to dete
t predators. It is not



18possible to di�erentiate between the two hypothesis with the approa
h distan
e data, as bothmake similar predi
tions regarding approa
h distan
e in the �rst approa
h of the predator. Itis di�
ult to determine the exa
t moment when a predator is dete
ted, but the two hypotheses
ould be di�erentiated by in
reasing the 
osts of hiding: the e
onomi
 hypothesis would predi
tin
reased exposure to predation, whereas the sensory limitation hypothesis would predi
t no
hange in antipredator behaviour. Further work to elu
idate whether the 
hanges in approa
hdistan
e in the immediate 
ondition are due to sensory limitations, to an e
onomi
 de
ision, ora 
ombination of both, is warranted.A third explanation for the redu
tion in approa
h distan
e in the immediate treatment aredilution e�e
ts: if the predator 
an only 
apture a single prey the 
han
es that the residentis the vi
tim de
rease in the immediate treatment be
ause there are two lizards in the area.The tests in Experiment 2 (presen
e vs. absen
e of female out of the refuge), although donot 
on
lusively ex
lude dilution e�e
ts, suggest that the 
hanges in approa
h and minimumdistan
es in the immediate treatment were not solely a result of dilution e�e
ts.In 
ontrast, the di�eren
es in Time to Reemerge and Time to Full Exposure between the
ontrol and the extended 
onditions (Experiment 1) 
annot be explained by the sensory lim-itation hypothesis or by dilution e�e
ts. Thus, the e
onomi
 hypothesis provides the bestexplanation for the 
hanges in time to reemerge.Past aggressive intera
tions with intruders 
an a�e
t the subsequent behaviour of a ter-ritorial holder. Great tits invest more time in territorial vigilan
e (at the 
ost of de
reasedforaging) after en
ountering intruders (Ydenberg & Krebs 1987; Ka
elni
k et al. 1981); inthe lizard S
eloporus jarrovi the frequen
y of most displays' peaks shortly after an en
ounter(Moore 1987; also Thompson & Moore 1992 for Urosaurus ornatus); in several taxa, followinga previous vi
tory, there is an in
rease in the probability of winning subsequent en
ounters(Adamo & Hoy 1995; Chase et al. 1994). Fun
tionally, these di�erent phenomena 
an be aresponse by the territorial resident to a transient in
rease in the probability of re-intrusion by



19the same intruder; and extended e�e
ts of aggression on antipredator behaviour are 
onsistentwith minimisation of the in
reased risk of territorial intrusion 
aused by a transient 
hange inthe probability of future intrusions. Thus, a similar fun
tional explanation 
an underlie di�er-ent behavioural phenomena where animals 
hange their aggressive/antipredator behaviour as aresponse to lo
al 
hanges in their so
ial environments (e.g., Oliveira et al., 1998).Extended e�e
ts show a 
onne
tion between antipredator and aggressive behaviour whi
hshould vary with the defensibility of resour
es, and that 
an in�uen
e the (
o)evolution of thesesets of traits, by in
reasing both predation related 
osts of territorial behaviour and territorial
osts of hiding. The hypothesis underlying extended e�e
ts is testable, using both within- andamong-spe
ies 
omparisons. Given that an e
onomi
 reasoning is the basis of the extendede�e
ts, it will also be parti
ularly important to understand the relative 
ontributions of per
ep-tual 
onstraints, dilution e�e
ts, and in
reased hiding 
osts in the e�e
ts of an ongoing �ght onapproa
h distan
es, and, ultimately, measure the �tness 
onsequen
es of di�erent antipredatorresponses following an aggressive en
ounter.1.6 A
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23Chapter 2
Antipredator behavior 
hangesfollowing an aggressive en
ounter:e�e
ts of testosterone manipulations
2.1 Abstra
tChanges in antipredator behavior following a 
onspe
i�
 territorial invasion suggest that malesof the lizard Tropidurus hispidus in
ur greater predation risks to minimize potential 
osts fromfuture 
onspe
i�
 intrusions. Elevated testosterone levels in several lizard spe
ies result in malesthat in
rease their allo
ation to territorial defense at the expense of other 
osts. Consequently,we expe
ted that elevated testosterone would: (1) in
rease exposure to predation; (2) produ
ea disproportionate in
rease in exposure to predation following a past aggressive intera
tion.We manipulated testosterone levels of male T. hispidus using sub
utaneous testosterone im-plants. Our results provide strong eviden
e that past aggressive intera
tions result in in
reasedexposure to predation and that the type of �rst en
ounter (aggressive intera
tion with a 
on-spe
i�
 vs. 
ontrol presentation) had long-lasting e�e
ts on antipredator behavior. We foundno eviden
e of an asso
iation between aggressive and antipredator behaviors, or of di�eren
esin aggressive behavior related to testosterone treatment (but we found indi
ation of a de
reasein aggression with in
reasing 
orti
osterone plasma levels). There was eviden
e of 
hanges inantipredator behavior asso
iated to hormonal treatments, but in a di�erent dire
tion from the



24one hypothesized. We dis
uss these results in the 
ontext of absen
e of 
hanges in aggressivebehavior related to testosterone, possibly related to housing 
onditions, and suggest that futurestudies might bene�t from fo
using on the role of 
orti
osterone.2.2 Introdu
tionRe
ent empiri
al work (Díaz-Uriarte, 1999) has shown that past aggressive intera
tions 
ana�e
t antipredator behavior: males of the lizard Tropidurus hispidus reemerge sooner froma refuge after hiding from a predator if the predator atta
ks 5 min after the resident malehas 
hased away a 
onspe
i�
 intruder male. Those results are 
onsistent with the e
onomi
hypothesis that male T. hispidus in
ur greater predation risk to minimize the potential 
ost offuture territorial intrusions. Fun
tionally, this hypothesis rests on two assumptions: �rst, thatintruders are persistent, so that a past aggressive intera
tion 
an inform a territorial residentthat subsequent intrusions are likely; se
ond, that su

essful defense of a territory is relevant forreprodu
tive su

ess. The territorial 
osts of hiding in
rease if intruders are persistent be
ausethe same amount of time in hiding 
an result in a mu
h larger de
rease in reprodu
tive su

essif an intruder is likely to return.The proximate me
hanisms underlying the 
hange in antipredator behavior following anaggressive en
ounter are unknown. There is eviden
e from sheep (Vandenheede & Bouissou,1996; Bouissou & Vandenheede, 1996) that in
reased testosterone results in de
reased fearful-ness (testosterone 
an also de
rease nest defense against predators by de
reasing the likelihoodof males with high testosterone being present at a nest �Cawthorn et al., 1998�, but this isnot 
ontradi
tory with the previous eviden
e). Other hormones su
h as thyroid hormone andgrowth hormone (e.g., Abrahams & Pratt, 2000; Abrahams & Sutterlin, 1999; Johnsson et al.,1999, 1996) have been shown to a�e
t antipredator responses by modifying the antipredator-foraging trade-o�. To our knowledge, there is no previous work on the e�e
ts of testosteroneon antipredator behavior operating by modifying, physiologi
ally, the antipredator-territorial



25defense trade-o�. However, it has been well do
umented that androgen hormones are involvedin territorial defense in lizards (e.g., S
eloporus jarrovi : Moore, 1988; Moore & Marler, 1987;Marler & Moore, 1989, 1991; Anolis sagrei : Tokarz, 1987, 1995; Uta stansburiana: DeNardo& Sinervo, 1994; Psammodromus algirus: Salvador et al., 1997). Therefore, the eviden
e fromtemperate-zone lizards indi
ates that in
reased testosterone levels result in males that in
reasetheir allo
ation to territorial defense at the expense of other 
osts (su
h as survivorship orforaging).If testosterone does in
rease the allo
ation to territorial defense, we would anti
ipate thatin
reases in testosterone will modify the trade-o� between antipredator behavior and territorialdefense so that, when fa
ed with a predator, animals with in
reased testosterone levels will in
urgreater predation risks to minimize the risk of territorial loses. This e�e
t should manifest itselfas a de
rease in the distan
e between predator and prey when the prey initiates es
ape (ap-proa
h distan
e) and/or a de
rease in the time to reemerge from a refuge following a predatoryatta
k. In addition, the e�e
ts of testosterone on antipredator behavior 
ould be enhan
ed if thepredator atta
ks shortly after a territorial resident has evi
ted a 
onspe
i�
 intruder be
ausethe territorial 
osts of hiding 
an be parti
ularly high. Thus, elevated testosterone levels arepredi
ted to 
ause a disproportionate de
rease in approa
h distan
e and/or time to reemergewhen the predator atta
ks shortly after a 
onspe
i�
 intrusion. In other words, we should ex-pe
t an intera
tion between testosterone level and the e�e
ts of a past territorial intrusion onantipredator behavior. These hypotheses 
an be examined using hormonal manipulations.Manipulation of hormone levels 
an also help investigate whether aggression and antipreda-tor behavior are physiologi
ally linked, and 
an in
rease the variation in aggressive and an-tipredator responses thus making 
ovariation patterns among these two sets of traits moredete
table (e.g., see Sinervo & Basolo, 1996 for dis
ussion of phenotypi
 manipulations). Ge-neti
 
orrelations among di�erent fun
tional 
ategories of behavior 
ould have dramati
 e�e
tson behavioral evolution, be
ause of 
orrelated responses to sele
tion (Stamps, 1991). The si-



26multaneous 
olle
tion of data on aggression and antipredator behavior allow one to examineif, at least phenotypi
ally, these two sets of behaviors are 
orrelated. Despite the value of thisapproa
h, studies that fo
us on the 
orrelation of fun
tional 
ategories with major �tness e�e
tsare still rare (Sih, 1992; Stamps, 1991). Nevertheless, a phenotypi
 
orrelation between aggres-sive and antipredator behavior has been found in a few 
ases (spiders: Rei
hert & Hedri
k,1993; see also Huntingford, 1976; Tulley & Huntingford, 1988), and it has been suggested thathormones 
ould be the link between these two fun
tional 
ategories (Rei
hert & Hedri
k, 1993;Stamps, 1991). But this hypothesis has not been tested.In this paper we examine the e�e
ts of testosterone manipulations on antipredator behaviorand on the 
hanges in antipredator behavior following a 
onspe
i�
 intrusion, in males of thelizard Tropidurus hispidus, for whi
h there is eviden
e that past aggressive intera
tions resultin 
hanges in antipredator behavior (Díaz-Uriarte, 1999). We also present data on testosteroneplasma levels and the e�e
ts of testosterone manipulations on the aggressive behavior of atropi
al spe
ies of lizard; most of the eviden
e for the e�e
ts of testosterone on aggressivebehavior of lizards 
omes from temperate-zone spe
ies (see referen
es above). In 
ontrast, bothmale and female Tropidurus hispidus are aggressive and territorial (pers. obs.), and are 
apableof reprodu
ing throughout the year (pers. obs.; also VanSluys, 1993).2.3 Methods2.3.1 Animals and study siteExperiments were 
ondu
ted between 26 July 1997 and 2 January 1998 at the Nisia FlorestaForest Experimental Station, EFLEX-IBAMA, (6◦ 5' S, 35◦ 12' W), lo
ated 45 km from Natal(Northeastern Brazil). We used adult males of the lizard Tropidurus hispidus (snout-ventlength [SVL℄ 70-130 mm), a widespread, diurnal, sit-and-wait iguanine lizard in South Ameri
a(Rodrigues 1987; Vitt 1995). Experimental subje
ts were adult males (SVL≥ 100 mm) 
aptured



27in villages 
lose to the station that had not been used in other experiments. Intruders (adultmales SVL > 90 mm) were used a maximum of three times and were never injured by theexperimental pro
edure. The same experimental animal was not exposed to the same intrudermore than on
e. All animals were released in the area of 
apture at the end of testing.2.3.2 En
losures and animal husbandryDetails on en
losures and animal husbandry are des
ribed in Díaz-Uriarte (1999). Brie�y, weused en
losures to minimize variation in behavior. En
losures were lo
ated in open pat
hesin plantation areas and measured 2 by 2 m. En
losures were 1 m high, 
onstru
ted fromtransparent plasti
 atta
hed to a wood frame. Ea
h en
losure 
ontained two refuges madewith bri
ks and roof tiles that o�ered prote
tion and were readily used by the lizards as hidingpla
es. En
losures were partially 
overed from above to provide shade during the 
entral hoursof the day, and also in
luded one adult female. In four 
ases, females disappeared before theend of the testing period, probably from predation. All females were randomly assigned toen
losures/males, ex
ept that females SVL had to be at least 5 mm less than that of the males(in the �eld, males were asso
iated with females smaller than themselves; pers. obs.).We pla
ed a blind 7.5 m away from the en
losure. Using suspended �shing lines, we 
ouldmove an intruder from behind the blind to inside the en
losure and retrieve it at the end of thetrial, without ever leaving the blind. En
losures were more than 15 m apart with dense andtall intervening vegetation ensuring no visual 
onta
t between them, and were pla
ed in areaswhere, during a period of ten months, we only observed four free-ranging adult T. hispidus (onemale, three females). Thus, intera
tions with naturally-o

urring 
onspe
i�
s should have beenextremely rare.Every two to three days lizards were fed a diet of 
ri
kets, meal worms, �y maggots, roa
hesand beetles (dusted with a multi-vitamin preparation �Reptivite� on
e a week), and a mixtureof egg, powdered milk, and fruit, and were provided with water in several water 
ontainers.



28Between trials, we thoroughly 
leaned all bri
ks and tiles and either removed the upper 3-5
m of soil, or added 3-5 
m of soil, to minimize the persisten
e of possible 
hemi
al marks orpathogens from previous residents. Animals in the en
losures displayed normal antipredator,aggressive, and mating behavior (see Díaz-Uriarte, 1999). While in the en
losures, lizards wererarely approa
hed by humans.2.3.3 Experimental design, antipredator tests, aggressive behaviorThis study involved two experimental fa
tors: an among-individual treatment (hormonal treat-ment) and a within-individual treatment (territorial intrusion). The hormonal treatment hadthree levels: empty implant (
ontrol), single testosterone implant, double testosterone implant.At the time this experiment was 
arried out, no information was available on the natural rangeof variation of testosterone levels in this spe
ies and therefore we used three di�erent levels forthe testosterone manipulation. In the empty group, animals were given two empty implants;in the single implant, animals were given one empty and one testosterone-�lled implant, and inthe double group, animals were given two testosterone-�lled implants. Hormone implants wereof silasti
 tubing (5 mm pa
ked length; ID 1.47 mm, OD 1.96 mm) and were pla
ed sub
uta-neously, one in ea
h side of the body, after making a small in
ision. Implants had been leftin saline solution for 24 h before implantation. Before surgery, animals were immobilized with
old and given lido
aine (0.02 ml, 0.2% solution) in the pla
e of the in
ision. By the time thelizards were released ba
k in the en
losures they were fully a
tive. The implants used in thisstudy were of the same size as those used for male S
eloporus jarrovi (Marler & Moore, 1988),whi
h weigh approximately half as mu
h as T. hispidus adult males.The territorial intrusion treatment (the within-individual treatment) had two levels: in-truder and 
ontrol. In both 
ases, we presented the male lizard with a stimulus (intruder or
ontrol) and, �ve minutes later, measured its antipredator behavior by simulating a predatoryatta
k. A test (stimulus presentation + antipredator test) lasted approximately 40 min per



29animal. In the intruder 
ondition, we introdu
ed an intruder adult male and left it inside theen
losure for a maximum of 15 min. On
e the resident atta
ked, the intruder was left inside for3 min or six atta
ks, whi
hever 
ame �rst (this is slightly di�erent from Díaz-Uriarte, 1999).If the resident had not dire
ted at least three atta
ks during the 3 min, the intruder was leftinside the en
losure until that 
riterion was met. After the trial was over, we retrieved theintruder to the blind, and then waited another 2 min before 
arrying out the antipredator test.In the 
ontrol 
ondition, we introdu
ed a wood sti
k (of approximately the same size and 
oloras an adult male) in pla
e of an intruder, and left it inside the en
losure for 4 min 10 se
 (themedian laten
y to atta
k from data in Díaz-Uriarte, 1999).The variables used to 
hara
terize antipredator behavior (Table 2.1, p. 30) re�e
t the twokey behavioral de
isions of a T. hispidus fa
ed with an atta
king predator: when to initiatees
ape from the predator and, after hiding, when to reemerge from the refuge. We used a humanas a simulated predator. To run the antipredator test, one of us positioned himself 13 m awayfrom the en
losure (4.5 m behind the blind) and approa
hed the lizard dire
tly at a moderatespeed (mean = 0.22 m/s, s.d. = 0.036 m/s). Whenever the lizard moved, the experimenterstopped for 15 se
 and re
orded his position and the lizard's position, and then approa
hedagain. The approa
h-and-stop 
ontinued until the lizard hid, and then the experimenter movedto a spot 4.5 m from the en
losure, and remained motionless for 20 min. The experimenterre
orded all his own movements and the lizard's behavior using an HP-48GX 
al
ulator for
ontinuous event re
ording. All tests and observations were 
ondu
ted by the same person(R. D.-U.) when lizards were a
tive and air temperature (shaded bulb at 1.5 m) was higherthan 26 ◦C. The experiment was blind with respe
t to hormone treatment: when antipredatortests were 
ondu
ted, the experimenter was unaware of the hormone treatment group of thelizards. Aggressive behavior was 
hara
terized using the four variables shown in Table 2.2 (p.30), measured during the presentation of the intruder.The territorial intrusion treatment was applied a

ording to a typi
al 
ross-over trial (e.g.,
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Table 2.1: Response variables used to measure antipredator behavior.Variable Des
riptionApproa
h distan
e Distan
e between observer and the lizard when the lizard�rst initiated �ight.Minimum distan
e Minimum distan
e between the observer and the lizard be-fore it initiated �ight; the same as approa
h distan
e iflizards run dire
tly to hiding or hide within 15 se
 of their�rst �ight.Time to reemerge Time sin
e the lizard hid until it reemerged (i.e., until atleast all the head was visible out of the refuge).Time to full exposure Time sin
e the lizard hid until it was fully exposed (all thelateral surfa
e of the body �not in
luding the tail� wasvisible out of the refuge.
Table 2.2: Response variables used to measure aggressive behavior.Variable Des
riptionLaten
y to �rst atta
k Time between when the intruder is introdu
ed in the en
lo-sure and the resident dire
ts its �rst atta
k (rapid movementtowards the intruder) or bite.Interval between �rstand third atta
ks Time between when the resident dire
ts its �rst and the thirdatta
k or bite.Displays before atta
k Number of displays (head bobs, push-ups) by the residentsin
e the intruder is introdu
ed in the en
losure until theresident dire
ts its �rst atta
k.Displays after atta
k Number of displays (head bobs, push-ups) by the residentbetween the time the intruder is returned behind the blindand the antipredator test is started. This is a 2 min period.The time it takes to return an intruder behind the blind isapproximately 2 min.



31Jones & Kenward, 1989; Díaz-Uriarte, 2000 a & b); we used the two sequen
es CIIC and ICCI(i.e., animals in sequen
e CIIC were �rst given the 
ontrol treatment, the following day the in-truder treatment, the third day the intruder and the fourth day the 
ontrol treatment). There-fore, the experimental unit is di�erent for the within- and the among-individual treatments.The e�e
ts of a territorial intrusion are estimated using within-animal 
omparisons, whereasthe e�e
ts of the hormonal manipulation are estimated using among-animal 
omparisons.In addition to the two experimental treatments, two potential sour
es of variation are en-
losures and bat
hes. The same six en
losures were used throughout the experiment. We
ondu
ted trials in bat
hes, with ea
h bat
h 
ontaining six males (one per en
losure). We usedbat
hes as a form of blo
king be
ause: 1) we had no information about possible variation intestosterone levels throughout the year, and this experiment was run over a six month period;2) there was temporal variation in the type of food available; using bat
hes we 
ould ensurethat, within a bat
h, all animals were provided with the same type and quantity of food, andat similar days/hours. In ea
h bat
h, two males were assigned to ea
h of the three levels of thehormone treatment. Within ea
h of the hormonal treatments, one male was randomly assignedto one of the sequen
es and the other male to the other sequen
e. Assignment of animals to thehormonal treatment was by restri
ted randomization (
ertain assignments were not allowed).Animals were ranked by mass and randomized among hormonal treatments. Non-allowed 
om-binations were those where the same hormonal treatment would have been assigned to eitherthe two largest or the two smallest animals. Thus, out of a total of 90 possible assignments, 30were not allowed. This was done to ensure adequate interspersion (Hurlbert, 1984) with respe
tto size to eliminate the possibility of 
onfounding hormonal manipulations with variations insize.The experiment was designed so that, at 
ompletion, ea
h en
losure would have been usedtwi
e with ea
h hormonal treatment (and on
e with ea
h 
ombination of hormonal treatment bysequen
e). This results in a layout resembling a Latin square: in ea
h bat
h, the three hormonal



32Table 2.3: Experimental design: en
losure, bat
h, hormonal treatment, and aggression-treatment sequen
e. D: double testosterone implant. S: single testosterone implant; E: twoempty implants. Bold: sequen
e CIIC for the aggression treatment. Empty 
ells are missingdata. In two 
ases (one S-male and one E-male), the animals 
ould not be tested be
ause ofextreme shyness and la
k of habituation. In three 
ases (two S-males and one E-male) malesdied during the study. In two 
ases (one S-male and one E-male) males disappeared, probablybe
ause they were eaten by an opossum (Didelphis albiventris). One animal (S-male) 
ouldnot be tested be
ause, during the three week period, there was 
ontinuous human a
tivityaround the en
losure. Note that the pattern of missing data 
annot be related to the hormonalmanipulation. En
losure1 2 3 4 5 6B 1 D S S E Da 2 S E E D Dt 3 E S E D D S
 4 S D D Eh 5 E D D E S6 S E Streatments are repli
ated twi
e, and for ea
h en
losure over the whole experiment, the threehormonal treatments are repli
ated twi
e. We randomly 
hose the square used. This s
hemewas maintained for the �rst �ve bat
hes. At the end of the �fth bat
h, however, we had beenable to get behavioral measurements from ten doubly-implanted males, seven single-implantedmales, and eight empty-implanted males. Keeping the same design for the sixth bat
h 
ouldhave resulted in even further unbalan
e, and thus for the sixth bat
h we assigned three ofthe en
losures to single-implanted males and three to empty-implanted males, randomly. Thea
tual design used is shown in Table 2.3 (p. 32).In ea
h bat
h the proto
ol was as follows. A male and a female were introdu
ed in ea
hen
losure on day one. They were fed and allowed to habituate for two or three days. On dayfour or �ve or early on day six, we took males out of the en
losures and surgi
ally implantedthem with testosterone-�lled or empty silasti
 implants (see below). Males were returned totheir en
losures within three hours. Thus, by day six all animals had been given hormoneimplants. For another 11 to 14 days (most studies with lizards that involve hormone implants



33leave implants in pla
e between one and three weeks before behavioral testing �e.g., Marler &Moore, 1989, 1991; DeNardo & Sinervo, 1994) animals were fed regularly and habituated to theintruder-delivery system (see Díaz-Uriarte, 1999 for details of habituation). During the nextfour days we measured antipredator behavior, as spe
i�ed by the sequen
es of within-individualtreatments. Most bat
hes were 
ompleted by day 22. During the �rst hours of a
tivity on day23 (i.e., one day after the last test was 
ompleted), we entered the en
losures and obtained ablood sample from the males. All blood samples were obtained within 4 min of entering theen
losure, and the samples for all males in a bat
h were obtained within one hour. Usually a newbat
h of lizards was introdu
ed in the en
losures on day 23 or 24. We removed the testosteroneimplants from males, and males and females were released in the areas where they had been
aptured. Animals were marked by toe-
liping; this allowed to individually identify ea
h animaland prevented using the same animals more than on
e in the experiment. All animals within abat
h were subje
t to the main manipulations (introdu
ing them in en
losures, baseline tests,surgery) at the same time, but there were minor variations from bat
h to bat
h (be
ause ofweather). Throughout the study period the hours of testing 
hanged to a

ommodate shiftsin a
tivity periods, and as summer progressed we also in
reased the shaded area within theen
losures.Blood samples for hormone assays were 
olle
ted from the post-orbital sinus using hep-arinized tubes. Blood was 
entrifuged, and plasma extra
ted and frozen at -10 ◦C. In additionto the experimental animals, during the months of January, Mar
h, and De
ember we 
olle
tedblood samples from another 33 adult males from several nearby areas (see Fig. 2.1, p. 39). Todetermine plasma levels of testosterone and 
orti
osterone, radioimmunoasay was performed asdes
ribed in Moore (1986) and Foufopoulos et al. (2000), following ether extra
tion of plasmaand 
hromatographi
 separation of the steroid hormones from ea
h other and from interferinglipids on a diatoma
eous earth : propanediol : ethylene gly
ol mi
ro
olumns. Ea
h sample wasassayed in dupli
ate. Intra-assay 
oe�
ients of variation were 1.3% for testosterone and 1.8%for 
orti
osterone. Inter-assay 
oe�
ients of variation were 4.6% for testosterone and 11.4% for
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orti
osterone. Testosterone and 
orti
osterone plasma levels for all the experimental animalswere determined in a single assay.2.3.4 Statisti
al analysesE�e
ts of hormonal manipulations on hormone levels (testosterone and 
orti
osterone) andaggressive behavior (Table 2.2, p. 30) were initially examined using linear mixed-e�e
ts models,with
yijkl = µ + ηi + ξj + (ηξ)ij + ck + bl + eijkl, (2.1)where y is the response, in the �xed e�e
ts part µ is the inter
ept, η is the hormone treatment,

ξ is the e�e
t of sequen
e, and the term in parentheses is the intera
tion hormone*sequen
e. Inthe random e�e
ts part, c, b, and e are the random e�e
ts of en
losure, bat
h, and individual,respe
tively; all the random e�e
t terms are assumed normal and independent of ea
h other.For hormone levels, only one measure per individual was available. For aggressive behavior,two observations were available; however, as the obje
tive was to relate aggressive behavior tohormone treatment, before the analyses we obtained the mean of the two responses (or themean of a suitable fun
tion of the responses, su
h as the log) for ea
h individual. When testingfor e�e
ts of bat
h and/or en
losure on testosterone and 
orti
osterone plasma levels, however,the p-values were obtained from ANOVA models with bat
h and en
losure as �xed e�e
ts,sin
e likelihood ratio tests of the hypothesis that a varian
e 
omponent is zero 
an be overly
onservative (Pinheiro & Bates, 2000; Verbeke & Molenberghs, 1997).We examined e�e
ts of hormonal manipulations on aggressive behavior with multivariateanalysis of varian
e (MANOVA; Krzanowski, 1990; Morrison, 1990), with hormone treatmentgroup as the explanatory variable and the four aggressive behavior variables as responses. Wealso examined the e�e
ts of plasma levels of testosterone and 
orti
osterone and their possibleintera
tion on aggressive behavior using multivariate regression (the extension of MANOVA



35for 
ontinuous explanatory variables). Be
ause of the exploratory nature of this part of thestudy, and to prevent for de
reases in power related to violations of assumptions of MANOVA(equality of 
ovarian
e matri
es a
ross groups) we also examined test-wise p-values of ea
h ofthe responses variables. To provide prote
tion against in�ated Type I error rates, we adjustedfor for multiple tests using Holm's sequentially reje
tive pro
edure (see Ri
e, 1989; Wright,1992), with an family-wise error rate of 15 % (see Chandler, 1995).Approa
h distan
e and minimum distan
e (Table 2.1, p. 30) were analyzed with linearmixed-e�e
ts models. We used the parameterizations in Jones & Kenward (1989), addingseveral 
ovariates and random e�e
ts (see also Díaz-Uriarte, 2000 b); the full model examinedwas
yijklmn = µ + ηi + ξj + (ηξ)ij + ck + bl + skl + πm + τn[j,m] +

λn[j,m−1] + (ηπ)im + (ητ)in + (ηλ)in + eijklmn, (2.2)where everything is as in expression (2.1), with the addition of: π (period e�e
t), τ (territorialintrusion e�e
t), λ (�rst-order 
arry-over e�e
t), and s (random e�e
t of subje
t �lizard);terms in parentheses denote intera
tions. As is 
ommon in 
ross-over designs, we assumedonly �rst order 
arry-over e�e
ts and no intera
tions of 
arry-over by treatment (i.e., 
arry-over of treatment A on treatment B is the same as 
arry-over of treatment A on treatmentA). When analyzing approa
h distan
e, we also in
luded a main e�e
t for approa
h speedduring the simulated predatory atta
k, as well as the intera
tions of approa
h speed withhormone treatment, sequen
e, and territorial intrusion. To examine the e�e
ts of plasma levelsof testosterone and 
orti
osterone, we used a model similar to (2.2), but we �tted simultaneouslylog testosterone and 
orti
osterone plasma levels instead of hormone treatment. To a

ount forpossible non-linear e�e
ts of plasma levels of testosterone and 
orti
osterone, we �tted modelswith quadrati
 terms and used added-variable plots (e.g., Ho
king, 1996).To �t the mixed-e�e
ts models, we pro
eeded as explained in Pinheiro & Bates (2000), Diggle



36et al. (1994), and Littell et al. (1996). Brie�y, we started with the full model, examining the �tof di�erent 
ovarian
e stru
tures (
ompound symmetri
, autoregressive, heteros
edasti
) for theappropriate random e�e
ts; we used residual plots to asses the adequa
y of the model, the needfor transformations of the response, and possible in�uential points. After sele
ting a 
ovarian
estru
ture, �xed e�e
ts terms were dropped sequentially from the model until all remainingterms had p < 0.05. If period (as 
ategori
al variable) was left in the model, we attemptedto simplify this model by �tting linear and quadrati
 terms of period as a 
ontinuous variable.In addition, if the �nal model did not in
lude some of the variables of primary importan
e(hormone treatment, territorial intrusion, their intera
tions, and the intera
tion of hormonetreatment with sequen
e) we reexamined if they needed to be in
luded in the �nal model.The variables time to full exposure and time to reemerge had 46 and 11 out of 110 obser-vations (about 42% and 10%) right-
ensored (i.e., in 46 trials lizards had not fully reemergedand in 11 trials lizards had not reemerged at the end of the 20 min observation period), andtherefore require the use of survival analysis. We used Cox's proportional hazards model (e.g.,Klein & Moes
hbereger, 1997), with a full model analogous to the one in (2.2). Brie�y, with thismodel the response is the hazard ratio, whi
h 
an be thought of as the instantaneous probabilityof reemergen
e� given no reemergen
e until that moment; this hazard ratio is modeled as theprodu
t of a baseline hazard ratio*exponential of the sum of the 
ovariate e�e
ts. To a

ount forrepeated measures within individuals, we used gamma frailty models (Klein & Moes
hberger,1997; Therneau & Grambs
h, 2000; a frailty is equivalent to a random e�e
t); these modelsgenerally yielded the same results as the marginal Cox model for multivariate survival data ofLee, Wei and 
ollaborators (Lee et al., 1992; Lin, 1994; Wei et al., 1989). However, statisti-
al tools for the in
lusion of more than one frailty term are still not well developed; thus, forthe survival analyses we regarded bat
h and en
losure as �xed-e�e
ts. We examined residualsfor model adequa
y and in�uential points (Klein & Moes
hberger, 1997; Collet, 1994); model�tting pro
eeded analogous to approa
h and minimum distan
e (ex
ept testing was based onlikelihood-ratio tests for frailty models).



37In terms of the hypothesis dis
ussed in the introdu
tion, if testosterone modi�es the e�e
ts ofpast aggressive intera
tions on antipredator behavior, we should observe a signi�
ant intera
tionterm between hormone treatment and territorial intrusion treatment (ητ). In the absen
e ofthis intera
tion, an overall 
hange in antipredator behavior related to hormonal manipulationswill be manifested as a signi�
ant main e�e
t of hormone treatment (η).We examined possible phenotypi
 
orrelations among antipredator and aggressive responseswith 
anoni
al 
orrelation analysis (e.g., Krzanowski, 1990; Morrison, 1990) using the four ag-gressive responses and two of the antipredator responses. Brie�y, 
anoni
al 
orrelation analysisattempts to �nd the largest possible 
orrelation(s) between a linear 
ombination of the �rst setof variables and a linear 
ombination of the se
ond set of variables; these linear 
ombinationsare the 
anoni
al variates, and the 
orrelations among them are the 
anoni
al 
orrelations. Inour parti
ular 
ase, there are two 
anoni
al 
orrelations (where the se
ond 
anoni
al 
orrela-tion is the largest possible, 
onstrained by the new 
anoni
al variates being un
orrelated withthe �rst ones). Thus, 
anoni
al 
orrelation is somewhat similar to multiple regression, ex
eptboth the �response� and the �predi
tors� are multivariate, and we make no distin
tion betweenresponse and predi
tor variables. We averaged, for ea
h individual, the value of ea
h aggressiveresponse (or a suitable fun
tion of it, su
h as log) over the two aggressive en
ounters. Forthe antipredator responses, however, we only used the �rst trial where the animal had beensubje
ted to a 
ontrol (i.e., not a territorial intrusion); using all four trials for antipredatorresponse 
ould have 
onfounded variation in antipredator behavior with variation in antipreda-tor behavior following a territorial intrusion. Similarly, be
ause of sequen
e and period e�e
tsin antipredator responses (see Results), the use of both 
ontrol trials 
ould have in
reased thevariability of the responses, and it is not 
lear how to adjust for sequen
e e�e
ts in the presen
eof sequen
e*hormone intera
tions (see Results). For all observations from the �rst 
ontrol trialApproa
h and Minimum distan
e had identi
al values, and thus only one of them was usedin this analyses. Time to Full Exposure was not in
luded as 40% of the observations were
ensored (see Results). We examined the hypothesis of no asso
iation between aggressive and



38antipredator behavior by testing that the 
anoni
al 
orrelations are zero with a likelihood ratiotest, as explained in Krzanowski (1990, p. 447 and �.).Linear mixed-e�e
ts models were �tted using the R library nlme (Pinheiro & Bates, 2000)and SAS's PROC MIXED (Littell et al. 1996). Survival models were �tted with the survival5 library (originally by T. Therneau, ported to R by T. Lumley) for R. Canoni
al 
orrelationswere performed with R (library mva). All p-values are two-sided.2.4 Results2.4.1 E�e
ts of hormonal manipulations on hormone plasma levels and ag-gressive behaviorFigure 2.1 (p. 39) shows the plasma testosterone and 
orti
osterone levels for the three treatmentgroups and a set of 33 wild adult males. We used (natural) log transformed data; analyses withdata in the original s
ale showed apparent outliers and very highly in�uential points, as wellas asymmetri
 normal probability plots; moreover, a log transformation helped stabilize thevarian
e and might be a natural transformation for a measure of 
on
entration (where, in theoriginal s
ale, the varian
e 
an in
rease with the mean). For log testosterone, there was noeviden
e of either bat
h �i.e., seasonal 
hanges� or en
losure e�e
ts (F5,15 = 1.44, p = 0.2671and F5,15 = 0.40, p = 0.8414, respe
tively), but strong eviden
e (F2,25 = 8.58, p = 0.0015)of hormone treatment; these 
on
lusions do not 
hange if we ex
lude the individual from thesingle implanted group with lowest testosterone level (this individual had a studentized residualof -3.26, whi
h is signi�
ant at the 0.05 level after bonferroni 
orre
tion). For log 
orti
osteroneplasma levels there was no eviden
e of bat
h, en
losure, or hormone treatment e�e
ts (F5,15 =

0.64, p = 0.6716, F5,15 = 2.00, p = 0.1362, and F2,25 = 1.33, p = 0.2833, respe
tively).However, there was strong eviden
e of a de
rease in the varian
e of log 
orti
osterone plasmalevels with hormone treatment (χ2
2 = 10.63, p = 0.0049 from a likelihood ratio test between
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Figure 2.1: Plasma testosterone and 
orti
osterone levels of the experimental animals and a setof 33 wild 
aught males.heteros
edasti
 and homos
edasti
 models). There was no eviden
e of an intera
tion betweensequen
e and hormone treatment or of a main e�e
t of sequen
e in either 
orti
osterone ortestosterone plasma levels (intera
tion: F2,22 = 0.41 and 0.80, p = 0.6692 and 0.4642 for
orti
osterone and testosterone, respe
tively; main e�e
t of sequen
e: F1,22 = 0.23 and 0.37,
p = 0.6363 and 0.5490). There was no eviden
e of a di�eren
e in log 
orti
osterone plasmalevels between wild and empty implanted animals (t15.03 = 0.59, p = 0.5648 from a Wel
htwo-sample t-test), but there was strong eviden
e of higher testosterone plasma levels in emptyimplanted than wild animals (t17.2 = 3.23, p = 0.0049), in spite of the large overlap in values.These results do not 
hange if we only use wild animals with SVL > 100 mm (t27.11 = 4.59, p <

0.0001). There was no 
orrelation between log plasma levels of testosterone and 
orti
osterone(ρ = 0.03, 28 d.f., p = 0.4435). Whether animals had been involved in an aggressive intera
tionthe day before or two days before did not a�e
t plasma levels of log testosterone (F1,23 = 0.88,
p = 0.3584) or log 
orti
osterone (F1,26 = 0.84, p = 0.3666).
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Figure 2.2: Aggressive behavior of resident male as a fun
tion of hormone treatment group.Explanation of variables in Table 2.2 (p. 30).The y-axis is log(se
onds) for the time variables and log(number +0.5) for number of displaysbefore and after atta
k.A MANOVA using the aggressive behavior variables (Table 2.2, p. 30) provided no eviden
efor e�e
ts of testosterone manipulations (Pillai's tra
e=0.37, F8,42 = 1.20, p = 0.32), as 
an beseen from Fig. 2.2 (p. 40). A multivariate regression using log testosterone and log 
orti
osteroneplasma levels and their intera
tion as independent variables provided no eviden
e of an intera
-tion between plasma levels of testosterone and 
orti
osterone (Pillai's tra
e=0.12, F4,19 = 0.65,
p = 0.64) or a main e�e
t of testosterone (Pillai's tra
e=0.24, F4,20 = 1.59, p = 0.21), and veryweak eviden
e (Pillai's tra
e=0.29, F4,20 = 2.06, p = 0.12) that animals with higher plasma



41levels of 
orti
osterone are less aggressive in intruder en
ounters. In fa
t, test-wise p-values forthe e�e
ts of 
orti
osterone on aggressive behavior variables (Table 2.2, p. 30) are 0.0256 forlaten
y to atta
k (log of laten
y to atta
k in
reases with log of 
orti
osterone with slope ± s.e.
0.2806±0.1164); p=0.0414 for interval between �rst and third atta
k (interval between �rst andthird atta
k in
reases with in
reasing 
orti
osterone (slope ± s.e: 0.4035 ± 0.1881); p=0.0641for number of displays after atta
k (slope ± s.e. for 
orti
osterone: −0.40±0.20); p=0.7325 fornumber of displays before the �rst atta
k. Ordering the p-values and using Holm's method, theadjusted p-values for 
orti
osterone are 0.1024, 0.1242, and 0.1282 (laten
y to atta
k, intervalbetween �rst and third atta
k, number of displays after atta
k), suggesting that aggressionmight de
rease with in
reasing 
orti
osterone levels.

When examining the 
orrelation between aggressive and antipredator behavior, a likelihoodratio test of the hypothesis that none of the 
anoni
al 
orrelations was di�erent from zero yieldsa p-value of 0.1236 (χ2
8 = 12.67 for asso
iation among aggressive and antipredator responseswhi
h, if anything, based upon the loadings, would suggest that animals that minimize risksfrom a predator are also those with higher aggressiveness). Thus, there is no eviden
e of anasso
iation between aggressive and antipredator behaviors.

There was no eviden
e of 
hanges in mass or SVL in the experimental males (paired t-tests;
omparison �nal and initial mass: t27 = 0.31, p = 0.7579; 
omparison �nal and initial SVL:
t27 = 1.04, p = 0.3085). More importantly, there was no eviden
e that 
hanges in mass or SVLwere asso
iated with hormone treatment group, plasma levels of testosterone, or plasma levelsof 
orti
osterone (all p-values>0.25).



422.4.2 Antipredator behavior: e�e
ts of hormonal manipulations and terri-torial intrusions2.4.2.1 Approa
h and minimum distan
eThe model for log minimum distan
e provides strong eviden
e for period e�e
ts (F1,80.3 = 14.66,
p = 0.0003) and territorial intrusion e�e
ts (F1,80.3 = 14.62, p = 0.0003); the model for approa
hdistan
e provides strong eviden
e of period e�e
ts (F1,65.4 = 9.73, p = 0.0027), and of anintera
tion between territorial intrusion and approa
h speed (F1,69.8 = 5.06, p = 0.0276). Inboth 
ases, there is a de
rease in distan
e with period, whi
h suggests habituation: lizardsallowed the predator to approa
h 
loser in later days of testing. For minimum distan
e, aterritorial intrusion de
reased minimum distan
e: lizards allowed a predator to approa
h 
loserbefore �eeing if the predator atta
ked 5 min after a territorial intrusion. For approa
h distan
e,if the predator atta
ked after a territorial intrusion lizards hid sooner when the predator'sapproa
h was faster (from a reparameterized model, regression 
oe�
ients (± s.e.) for 
ontroland territorial intruder are 1.63 (±2.05) and 6.78 (±1.63); t79.6 = 0.79; t78 = 4.17; p = 0.4315and p < 0.0001 respe
tively).In addition, for both log approa
h and minimum distan
e there was eviden
e of an intera
-tion between sequen
e and hormone treatment (F2,21.6 = 4.31, p = 0.0266, and F2,22.1 = 4.74,
p = 0.0194) for approa
h and minimum distan
e respe
tively. As 
an be seen in Figure 2.3 (p.44) both empty-implanted and single-implanted animals have smaller minimum distan
es whenin sequen
e 1 (ICCI), whereas the pattern is reversed for doubly implanted animals; analogousresults hold for approa
h distan
e.The interpretation of a sequen
e by hormone intera
tion is 
ompli
ated. First, the datashow strong eviden
e of a hormone*sequen
e intera
tion but not of hormone*
arry-over, hor-mone*territorial intrusion or hormone*period intera
tions. Di�eren
es among sequen
es 
an bethe result of bad lu
k in the randomization pro
ess or of high-order 
arry-over e�e
ts (see also



43Díaz-Uriarte 2000 b): a sequen
e term re�e
ts all that is di�erent among sequen
es that is nota

ounted for by treatment or 
arry-over e�e
ts. As is 
ommon in 
ross-over trials, we haveused a very restri
tive model for 
arry-over e�e
ts, whi
h makes, among others, the assumptionthat there are only �rst-order 
arry-over e�e
ts. However, in this 
ase it seems that the �rstperiod has an e�e
t that lasts for the rest of the experiment.To understand the results, we 
an analyze ea
h period on its own for eviden
e of se-quen
e*hormone intera
tions, whi
h would be equivalent to territorial intrusion*hormone in-tera
tions, as within ea
h period a sequen
e fully determines the type of territorial intrusiontreatment. In these analyses, in periods one to three there was eviden
e (all p-values < 0.05) ofa hormone by sequen
e (or territorial intrusion) intera
tion (in the fourth period the eviden
eis weak �p = 0.13). The test from the �rst period provided eviden
e of an intera
tion betweenterritorial intrusion and hormone treatment; however, analyses of periods 2 to 4 
onfound thepossible e�e
t of a true territorial intrusion*hormone intera
tion with the e�e
ts of past events(�rst or higher-order 
arry-over e�e
ts). We 
an also examine if the di�eren
e (in the responsevariable) between the �rst and se
ond period, between the se
ond and third, between the thirdand fourth, and between the �rst and the mean of the other three, shows any eviden
e of se-quen
e*hormone intera
tions; in other words, we 
an examine if the 
hange in response variablefrom one period to the next is di�erent among di�erent hormone treatments. There was noeviden
e of intera
tion (p > 0.09 in all eight 
ases) or of main e�e
ts (p > 0.13 in all eight 
ases)of hormone treatment: after the �rst period, the 
hange in response variable between one periodand the following was not a�e
ted by hormone treatment. In other words, the 
hange betweenperiods is the same among levels of hormonal treatment, whi
h means that e�e
ts of territorialintrusions are additive after the �rst period. Therefore, the intera
tion between sequen
e andhormone dete
ted in the full model is the 
onsequen
e of an intera
tion between territorialintrusion*hormone in the �rst period that is maintained for the rest of the study.These patterns 
an be seen from Fig. 2.3 (p. 44) b & 
: the traje
tories over time are



44roughly parallel a
ross the three hormone treatment groups within ea
h sequen
e. Within ea
hsequen
e we 
an observe an overall de
rease in response variable over time and a de
rease inresponse variable 
orresponding to an intruder treatment. The parallel lines over time show theadditive e�e
ts of period and intruder treatment. However, there were large di�eren
es amonghormone treatment levels in the response in the �rst period: for both empty implanted andsingle implanted animals minimum (and approa
h) distan
e were smaller following a 
onspe
i�
en
ounter, but in the doubly-implanted animals this pattern was reversed; if we 
ompare onlybetween empty implanted and single implanted the patterns were the same in both sequen
es,with the single implanted having larger approa
h and minimum distan
es than the emptyimplanted. In summary, in the �rst period the e�e
t of a territorial intrusion depends onhormone treatment:, but after the �rst period e�e
ts of territorial intrusions and period a
tadditively with respe
t to the value from the �rst period.Given that the double-implanted group showed a behavior 
learly distin
t from the other twogroups, and showed little overlap in their testosterone levels with the other two experimentalgroups, we next analyzed the data ex
luding the double-implanted animals. There was no
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e, hormone, territorial intrusion and period.Ea
h point 
orresponds to the (ba
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45eviden
e of a hormone by sequen
e intera
tion (F1,14 = 1.37, p = 0.2613, and F1,14 = 0.43,
p = 0.5220, for approa
h and minimum distan
e respe
tively). There was, however, eviden
e ofdi�eren
es between hormone treatments (F1,15 = 6.74, p = 0.0203, F1,14 = 4.23, p = 0.0570, forapproa
h and minimum distan
e, respe
tively), where animals with a single implant have largerapproa
h and minimum distan
es than the empty implanted males. The rest of the 
on
lusionsfor e�e
ts of period, sequen
e, and territorial intrusion �or territorial intrusion by approa
hspeed� remained un
hanged (for approa
h distan
e p-values are 0.0480, 0.0042 and 0.0028 forsequen
e, period and territorial intrusion by approa
h speed; for minimum distan
e p-valuesare 0.0394, 0.0004 and 0.0014 for sequen
e, period and territorial intrusion).

Even though there was an e�e
t of hormone treatment level on approa
h and minimumdistan
e, when we �tted models that in
luded log testosterone and 
orti
osterone plasma levelsinstead of hormone treatment group for empty and single implanted animals we did not �ndany di�eren
es in either approa
h or minimum distan
e related to testosterone plasma levels(p > 0.8 for both minimum and approa
h distan
e). For approa
h distan
e, however, there wasa signi�
ant intera
tion between 
orti
osterone plasma levels and territorial intrusion (F1,40 =

4.85, p = 0.0335) where there was an in
rease in approa
h distan
e with in
reasing levels of
orti
osterone when animals were subje
t to a 
ontrol presentation, but there was no 
hange inapproa
h distan
e with 
orti
osterone plasma levels when animals were subje
t to a territorialintrusion (and, for an animal with a plasma 
orti
osterone level equal to the observed mean
orti
osterone plasma level, approa
h distan
e is smaller when exposed to an intruder thanwhen exposed to a 
ontrol presentation). There was no eviden
e of su
h an intera
tion forminimum distan
e (F1,50 = 0.81, p = 0.37). None of these 
on
lusions are 
hanged by applyingHolm's multiple 
omparisons approa
h.



462.4.2.2 Time to reemerge and time to full exposureAnalyses of time to reemerge using hazard models provided strong eviden
e of di�eren
es amonghormone level treatment groups (χ2
2 = 14.61, p = 0.0007) where double-implanted animalsreemerged later than the empty implanted and single implanted reemerged slightly sooner thanthe empty implanted. Analyses of time to full exposure yielded results in the same dire
tion,although not signi�
ant (χ2

2 = 4.74, p = 0.0934). If we spe
i�
ally test for di�eren
es betweenthe double implanted and the other two groups, there was eviden
e of di�eren
es for bothresponse variables (χ2
1 = 3.79, p = 0.052,χ2

1 = 7.21, p = 0.0072, for time to reemerge andtime to full exposure, respe
tively). If we ex
lude the double-implanted animals, there wasno eviden
e of di�eren
es between empty and single implanted for any of the two responsevariables (χ2
1 = 1.74, p = 0.19, χ2

1 = 0.46, p = 0.50, for time to reemerge and time to fullexposure, respe
tively; the hazard rate for a double implanted animal was 0.63 that of any ofthe other two groups for time to reemerge, and 0.392 for time to full exposure). Analyses usingtestosterone and 
orti
osterone plasma levels from empty and single-implanted animals did notshow any eviden
e of di�eren
es in either response variable related to hormone plasma levels(for testosterone both p-values > 0.6; for 
orti
osterone both p-values > 0.19).For both response variables, there was very strong eviden
e that being subje
t to a territorialintrusion resulted in faster reemergen
e (χ2
1 = 18.19, p < 0.0001, χ2

1 = 15.92, p < 0.0001, fortime to reemerge and time to full exposure, respe
tively, in analyses that in
lude the threehormone treatment groups (χ2
1 = 22.9, p < 0.0001, χ2

1 = 11.61, p < 0.0011, for time to reemergeand time to full exposure, respe
tively, in analyses that in
lude only empty and single implantedanimals), as shown in Fig. 2.4 (p. 47). The hazard rate of an animal exposed to a 
onspe
i�
intrusion is 3.78 times that of an animal following a 
ontrol presentation for time to reemerge,and 2.71 for time to full exposure (from analyses that ex
lude the double implanted animals;similar results are obtained from analyses with all three groups). None of these 
on
lusions are
hanged by applying Holm's multiple 
omparisons approa
h.
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Figure 2.4: Survival 
urves of time to reemerge based on the Kaplan-Meier estimator of thesurvival fun
tion. The y-axis 
an also be understood as �probability of not having reemergedby time t�.2.5 Dis
ussionThe initial hypothesis that testosterone would modify antipredator behavior, so that animalswith higher testosterone levels would in
ur greater predation risks, was based upon the assump-tion that testosterone results in in
reased allo
ation to territorial defense (see Introdu
tion). Inthis study, the la
k of an e�e
t of testosterone treatment on aggressive behavior suggests, to the
ontrary, that in male T. hispidus testosterone does not result in an in
rease in the allo
ationto territorial defense (at the expense of other 
osts). Thus, there is no reason to expe
t anin
rease in exposure to predation related to testosterone manipulations in males of this spe
ies,or an intera
tion between testosterone treatment and the e�e
ts of a past territorial intrusion.Our results show, for empty and single implanted animals, that in
reased testosterone wasnot asso
iated with in
reased exposure to predation; in fa
t, in
reased testosterone resulted inde
reased exposure to predation as measured by 
hanges in approa
h and minimum distan
e.Animals with double implants exhibited a di�erent pattern; �rst, they were the ones that took



48signi�
antly longer to reemerge; se
ond, and more strikingly, the e�e
t of sequen
e (type of �rsttrial �
ontrol or intruder) on approa
h distan
e was opposite to that observed in the other twogroups (see Fig. 2.3, p. 44). These di�eren
es between the double implanted animals and theother two groups 
ould be related to pharma
ologi
al e�e
ts of the double testosterone implant(the double implanted animals are outside the range of testosterone levels for wild animals; seeFig. 2.1, p. 39) and also to the e�e
ts of the testosterone implants on other hormones, su
h as
orti
osterone; together, these 
hanges might a�e
t the response to stimulae in ways that di�erfrom the other two treatment groups.The above results do not pre
lude 
hanges in antipredator behavior, and intera
tions be-tween testosterone levels and e�e
ts of past territorial intrusions on antipredator behavior, inthe dire
tion predi
ted in the introdu
tion where there is an in
rease in aggression with testos-terone (e.g., S
eloporus jarrovi : Moore & Marler, 1987; Anolis sagrei : Tokarz, 1987, 1995; Utastansburiana: DeNardo & Sinervo, 1994). Our results suggest that testosterone does not playa role in the aggressive behavior of male T. hispidus, a tropi
al lizard with �exible breedingpatterns (from marked seasonality �e.g., Prieto et al., 1970� to extended breeding seasons�Vitt & Goldberg, 1983; pers. obs.), where both male and female are territorial year around,at least in the study area. We are not aware of other studies on the e�e
ts of testosteronemanipulations in hormone levels of tropi
al lizards, but studies with tropi
al birds that are ter-ritorial year around have yielded mixed results (see Hau et al., 2000; Wikelski et al., 1999; andreferen
es therein) indi
ating that testosterone might not ne
essarily play a role in the aggres-sive behavior of tropi
al vertebrates that are aggressive throughout the year. However, a role oftestosterone on the aggressive and territorial behavior 
annot be ex
luded without additionalstudies involving 
astration (e.g., Moore & Marler, 1987), and/or antiandrogen treatment (e.g.,Tokarz, 1987). Moreover, the la
k of e�e
ts of testosterone manipulations on aggressive behav-ior in this experiment 
ould be related to the already elevated testosterone plasma levels of theempty implanted animals 
ompared to the wild animals (e.g., Fig. 2.1, p. 39). The di�eren
esbetween wild males and empty implanted males 
an be 
aused by the housing 
onditions, in



49parti
ular the 
lose proximity of a female during three weeks, a regular food supply, and notbeing 
hallenged by other males for three weeks.Our work, though, suggest that 
orti
osterone 
ould play a role on how past aggressiveintera
tions a�e
t antipredator behavior. First, there was some eviden
e that in
reased in 
or-ti
osterone resulted in de
reased aggression towards intruders; se
ond, the intera
tion between
orti
osterone and territorial intrusion on approa
h distan
e indi
ates that, in the absen
e ofpast 
onspe
i�
 intrusions, in
reased 
orti
osterone is asso
iated with de
reased exposure topredation, but that these e�e
ts of 
orti
osterone 
an be overridden by a past territorial in-trusion (sin
e 
orti
osterone was not asso
iated with approa
h distan
e following a 
onspe
i�
intrusion).The results of this study provide additional 
on�rmation (on the same spe
ies) of the resultsin Díaz-Uriarte (1999): animals in
reased their exposure to predators following an aggressiveen
ounter. However, in this study we found this e�e
t in both approa
h distan
e and reemer-gen
e behavior, whereas Díaz-Uriarte (1999) only found this e�e
t on reemergen
e behavior.Re
ent theoreti
al work (Díaz-Uriarte, 2000
) indi
ates that the in
reased 
ost of hiding follow-ing a 
onspe
i�
 intrusion should only modify reemergen
e behavior, not when to hide from anatta
king predator. However, other fa
tors 
an operate together with in
reased 
ost of hiding(estimation of the probability that the approa
hing predator is an atta
king one, interruptedforaging and environmental sampling) that result in a de
rease in approa
h distan
e. Mostof the experimental 
onditions of both studies were very similar, but three di�eren
es 
ouldexplain la
k of dete
tion of e�e
ts on approa
h distan
e in Díaz-Uriarte (1999): (1) smallersample size (15 vs. 28 animals); (2) smaller number of measures per individual (two vs. four);(3) faster approa
h speed 0.42 m/s vs. 0.22 m/s). Be
ause of the �rst two di�eren
es this exper-iment had higher statisti
al power than the one in Díaz-Uriarte (1999); slower approa
h speedin this experiment means that the same de
rease in approa
h distan
e does not result in thesame in
rease in mortality risk, and therefore other fa
tors (e.g., estimation of the probability



50of an atta
k by the predator) 
ould have dete
table e�e
ts in hiding.These di�eren
es in experimental 
onditions might also explain why we found sequen
e ef-fe
ts in approa
h and minimum distan
e in this experiment, but none were found in Díaz-Uriarte(1999). A more likely explanation, though, is the di�eren
e in the time that experimental malesare isolated from other 
onspe
i�
 males before the tests were 
ondu
ted. In Díaz-Uriarte (1999)animals were pre
luded from �ghting with other 
onspe
i�
 males for one week. In 
ontrast, inthis experiment males were isolated for about three weeks, and thus an aggressive intera
tion
ould have a mu
h larger and longer lasting e�e
t on antipredator behavior, and explain whyanimals from the ICCI (intruder/
ontrol/
ontrol/intruder) sequen
e showed, overall, smallerapproa
h and minimum distan
es. These long lasting e�e
ts, however, were not a�e
ted bytestosterone manipulations. These long lasting e�e
ts 
ould not have been dete
ted with othertypes of designs, and should be taken into a

ount in future studies.In spite of the strong e�e
ts of a past aggressive intera
tion on antipredator behavior, wefound no 
ovariation between aggressive and antipredator behaviors (i.e., males that showedmore aggressive behavior towards 
onspe
i�
s did not show bolder behavior towards a predator).These data, thus, 
onstitute a 
ounter-example of the idea that a 
orrelation between aggressiveand antipredator behavior 
ould share a 
ommon physiologi
al basis and be widespread innature (Rei
hert & Hedri
k, 1993). Male T. hispidus 
annot be positioned along a single shy-bold axis, where aggression and antipredator responses are essentially the manifestation of anunderlying �fearfulness� trait (Huntingford, 1976; see also Wilson et al., 1993, 1994). The la
kof 
orrelation between aggressive and antipredator behavior is not in
onsistent with the stronge�e
ts of a past aggressive intera
tion on antipredator behavior. The latter are based on within-individual e�e
ts, whereas the former relate to among-individual 
ovariation in aggressive andantipredator responses. Moreover, the la
k of among-individual 
ovariation in antipredator andaggressive behavior does not ex
lude that, within individuals, an in
rease in the aggressivenessof the intera
tion 
ould result in a larger in
rease in predator exposure.
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55Chapter 3
Territorial intrusion risk andantipredator behaviour: amathemati
al model
3.1 Abstra
tIn territorial animals that hide to avoid predators, a predatory atta
k 
reates a 
on�i
t be
ausea hiding animal 
annot defend its territory from 
onspe
i�
 intruders. When intruders arepersistent, a past 
onspe
i�
 intrusion informs a territorial resident that future intrusions bythe same animal are likely. Using a mathemati
al model, I examine the e�e
ts that pastterritorial intrusions 
an have on antipredator behaviour when intruders are persistent. Pastaggressive intrusions rarely a�e
t time to hide: the optimal behaviour is to hide as soon asthe predator initiates its atta
k. Time to reemerge is strongly a�e
ted by past aggressiveintera
tions (animals reemerge sooner from a refuge), and these e�e
ts depend on the timeof the predator's atta
k, the reintruder's pattern of return, and the intrusion rates of other
onspe
i�
s. Di�eren
es between my �ndings and those from previous studies suggest that thetrade-o� between antipredator behaviour and territorial defen
e 
an involve di�erent types of
osts than the trade-o� antipredator behaviour- foraging. The results of this model establisha 
onne
tion between population level pro
esses, mating system and defensibility of resour
es,and antipredator behaviour, and 
an have empiri
al and theoreti
al relevan
e for studies of the
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o)evolution and e
ologi
al 
onsequen
es of aggressive and antipredator strategies.3.2 Introdu
tionThe antipredator strategy of territorial animals should be a�e
ted by the need to defend aterritory. Theoreti
al and empiri
al work on the trade�o� between predator avoidan
e andforaging has shown that antipredator behaviour will 
hange when there are 
hanges in theterms of the trade�o� between mortality risk from predation and 
osts of hiding/es
apingfrom predators (see Clark, 1994; Ydenberg & Dill, 1986; reviews in Lima & Dill, 1990; Lima,1998). For instan
e, animals adopt behavioural strategies that lead to an in
rease in exposureto predation (e.g., delaying es
ape from a predator) when the 
osts of interrupting foragingin
rease (e.g., when foraging at a better pat
h).In 
ontrast to the wealth of studies on the trade-o� between antipredator and foragingbehaviour, there is little resear
h on the trade�o� between antipredator behaviour and territorialdefen
e, even though the reprodu
tive su

ess of territorial animals 
an be strongly a�e
ted bysu

essful territorial defen
e. The approa
h of a predator 
reates 
on�i
ting demands on aterritorial animal: hiding minimises mortality from predation but de
reases the 
han
es ofdete
ting and 
hasing away 
onspe
i�
 intruders (i.e., in
reases the territorial 
osts of hiding).There is eviden
e that in
reases in predation risk tend to result in a de
rease in the numberor intensity of aggressive intera
tions (e.g., Baker et al., 1999; Bri
k, 1999; Helfman, 1989;Krupa & Sih, 1998; Martel, 1996; Whitehouse, 1997; Wisenden & Sargent, 1997), but thee�e
ts of aggressive intera
tions on antipredator behaviour have been rarely examined (butsee Bri
k, 1998; Cooper, 1999; Díaz-Uriarte, 1999; Jakobsson et al., 1995). The trade�o�between territorial defen
e and predator avoidan
e 
an be parti
ularly interesting if there areshort�term 
hanges in the territorial 
osts of hiding that are 
aused by lo
al 
hanges in theso
ial environment. In fa
t, in some territorial spe
ies intruders enlarge or obtain territoriesby intruding persistently into the territories of settled animals (review in Stamps & Krishnan,



571995, 1998). In these 
ases a re
ent 
onspe
i�
 intrusion indi
ates an in
reased probabilityof future intrusions and therefore the territorial 
osts of hiding 
ould be very high followinga 
onspe
i�
 intrusion; thus, antipredator behaviour should 
hange to de
rease the 
han
es ofterritorial intrusions at the 
ost of in
reased predation risks.There is re
ent empiri
al eviden
e (Díaz-Uriarte, 1999; Díaz-Uriarte & Marler, in prep.)that territorial males of the lizard Tropidurus hispidus in
rease their exposure to predationwhen a predator approa
hes shortly after the territorial male has 
hased away a 
onspe
i�
intruder male, 
onsistent with the arguments above. In these experiments, male lizards werepresented (and allowed to �ght) with a 
onspe
i�
 intruder male, and 5 min later were subje
tto a simulated predatory atta
k by a human. Antipredator behaviour was 
hara
terised usingtwo types of variables: 1) when did the lizard initiate es
ape from the predator; 2) when didthe lizard reemerge from the refuge after hiding. In the �rst study, only time to reemerge froma refuge is a�e
ted by past aggressive intera
tions; in 
ontrast, initiation of hiding does notdepend on past aggressive intera
tions. In the se
ond study, both time to reemerge from arefuge and initiation of hiding are a�e
ted by past aggressive intera
tions.The 
onditions that give rise to a trade-o� between antipredator and territorial behaviourin males of the lizard Tropidurus hispidus are likely to be 
ommon to many other spe
ies thatare both territorial and prey of other animals. Thus e�e
ts of past aggressive intera
tions onantipredator behaviour are likely to be widespread, but demographi
 and so
ial fa
tors thatvary both within and among spe
ies, su
h as population density and behaviour of reintruders,should a�e
t this trade-o�. The purpose of this paper is to investigate how past aggressiveintera
tions should a�e
t antipredator behaviour in territorial animals that need to defend theirterritories against 
onspe
i�
s and are also potential prey that use refuges to avoid predation.The model fo
uses on the e�e
ts of the reintruder's behaviour, the probability of intrusionof other 
onspe
i�
s, and the timing of predator atta
k relative to the end of the 
onspe
i�
intrusion.



583.3 The model3.3.1 The basi
 problemSuppose that a territorial male is defending an area that overlaps the home ranges of severalfemales. If other males invade the territory while the resident is hiding they 
ould mate with thefemales in the territory and the number of females that 
an be fertilised by the invading malesin
reases with the time these invading males spend in the territory before being evi
ted. Thismale 
hases away a 
onspe
i�
 intruder at time 0. Some time later (tp) a predator initiatesapproa
h (the predator is dete
ted as soon as it initiates approa
h). The resident needs tode
ide: (1) when to es
ape (time to hide, th), and (2) when to reemerge (time to reemerge,
tr). The longer the resident waits to hide (i.e., the larger the th) or the shorter the time toreemerge, the more likely it is to be killed by the predator. On the other hand, the longer theanimal remains hiding the more likely it is that intruders 
an invade the territory. On
e anintruder enters the territory, it stays there until the resident reemerges, and the reprodu
tivesu

ess of the resident de
reases with time that intruders spend in its territory. There are twotypes of intruders, the re-intruder that was 
hased away at time 0 and other 
onspe
i�
s fromthe overall population. The e�e
ts of the prior aggressive en
ounter (the animal 
hased awayat time 0) are only related to the probability that the reintruder returns, but do not a�e
tthe rate of intrusion of other 
onspe
i�
s. Intruders 
annot su

essfully invade the territory ifthe predator is in the area or if the territorial resident is not hiding, but they 
an attempt toreinvade during these periods. The la
k of attempted reinvasion by the reintruder prior to theresident hiding 
an provide the resident with information on the probability of a reinvasion inthe future.I assume that the resident has to maximise �tness, the produ
t of its probability of survivingthe atta
k of the predator times its expe
ted reprodu
tive su

ess, by 
hoosing optimal valuesof time to hide (th) and time to reemerge (tr). In the next se
tions I give details about ea
h



59
omponent of the model (see also Table 3.1, p. 62, for summary of variables). In this model,I make many simplifying assumptions, with fun
tion sele
tion di
tated by the desire to havesimple fun
tions that are, nonetheless, biologi
ally plausible.3.3.2 Surviving the predator's atta
kThe main biologi
al assumptions that I make with respe
t to the predator's atta
k are: (1) thatsurvivorship is a monotoni
ally de
reasing fun
tion of time to hide; (2) that survivorship is amonotoni
ally in
reasing fun
tion of time to reemerge; (3) that the predator's atta
k is a fastevent; (4) that the de
rease in survivorship from delaying hiding for one unit of time is largerthan the de
rease in survivorship from reemerging one unit earlier for su�
iently large valuesof time to reemerge. I have implemented these as follows.The probability of surviving the initial atta
k of the predator de
reases linearly with th sothat at th ≥ 10 the probability of surviving is 0. Thus, the probability of surviving the initialatta
k is
1 −

th
10

(3.1)for all 0 ≤ th ≤ 10, and 0 otherwise. On
e the resident hides in the refuge, the predator staysaround the area but has a 
onstant rate of leaving ρ (thus, the predator's time of leaving is anexponential distribution with mean 1/ρ). I assume that the resident is killed if it reemerges fromthe refuge while the predator is in the area. Thus, the probability that the resident survivesreemergen
e is the probability that the predator has left the area by tr or
1 − e−ρtr . (3.2)The probability of surviving the atta
k is therefore the produ
t of expressions 3.1 and 3.2.There is no mortality while the resident is hiding.



603.3.3 Time that intruders spend in the territoryI assume that the de
rease in reprodu
tive su

ess of the resident is a linear fun
tion of thetime that intruders spend in its territory. Final reprodu
tive su

ess is
I − cTotal time intruders spend in territory (3.3)where I is the initial value or initial territorial assets (i.e., the reprodu
tive su

ess yielded by aterritory before any intruder spends any time at all, or before any intruder 
auses any de
rease)and c is a s
aling fa
tor for the rate of de
rease of reprodu
tive su

ess with time that intrudersspend in the territory (the larger c the greater the de
rease in reprodu
tive su

ess per unittime that intruders spend in the territory).

3.3.3.1 Time spent by other 
onspe
i�
sI assume that the only variable that a�e
ts reprodu
tive su

ess is the total a

umulated timethat intruders spend in the territory (i.e., one intruder spending 20 time units in the territoryresults in the same de
rease in reprodu
tive su

ess as four intruders ea
h spending 5 timeunits). I model the entry of the other 
onspe
i�
s (as opposed to the re-intruder) as a Poissonpro
ess, where β is the rate of entry of intruders, and does not 
hange over time or with thenumber of intruders already in the territory (ex
ept that no 
onspe
i�
 
an intrude in theterritory if the predator is still present). It is shown in Appendix 3.A (p. 78) that the expe
tedtotal time that the other 
onspe
i�
s a

umulate is given by
∫ tr

0
β

(tr − s)2

2
ρ e−ρs ds =

β

ρ2
−

β

ρ2eρtr
−

βtr
ρ

+
βt2r
2

. (3.4)



613.3.3.2 Time spent by the re-intruderIn 
ontrast to the other 
onspe
i�
s, the re-intruder is the one parti
ular individual that was
hased away at time 0. The reintruder 
an either attempt to reinvade the territory or not; if itattempts a reinvasion, the reintruder's attempted return time has a 
ertain probability densityfun
tion (pdf). However, the reintruder 
an only reinvade su

essfully if the resident is hidingand the predator has left the area. I show in Appendix 3.A (p. 78) that if the time of return tiis distributed a

ording to the pdf fT (ti) (and FT (ti) is the 
umulative distribution fun
tion)the expe
ted time that the reintruder spends in the territory (x) is given by
E[X|No attempted invasion by tp + th] =

p

1 − pFT (tp + th)

∫ tr

0
xfT (tp + th + tr − x) (1 − e−ρ(tr−x)) dx. (3.5)I evaluated this integral numeri
ally.3.3.4 Parameter values and robustness of resultsThe range of values for the di�erent parameters is shown in Table 3.1 (p. 62). Changes inthe values of one or more parameters only lead to numeri
al di�eren
es, but not to 
hanges inqualitative patterns (see also Dis
ussion); for instan
e, noti
e how the di�erent panels withinFig. 3.2, 3.3, 3.4 (pp. 65, 66, 67) are s
aled versions of ea
h other. The only ex
eption to thisare very small values for the varian
e of reintruder's return time (see below). All results shownin the �gures 
orrespond to a probability of reintrusion (p) of 0.9; 
hanges in this parameteronly either in
rease or de
rease the e�e
ts of the reintruder, but in most of the 
ases examinede�e
ts of a past reintrusion are observable with p = 0.4.For �xed reintrusion time I have arbitrarily set ti = 400. Choosing a di�erent value makesno di�eren
e, as the relevant variable is not ti (or its mean for the log-normal distribution), but

tip(= ti − tp), the time at whi
h the reintruder returns with respe
t to the predator atta
k. To



62Table 3.1: Main variables and parameters of the model.Symbol Meaning Range
th Time to hide (relative to initiation of predator atta
k) Optimisedvariable
tr Time to reemerge (relative to initiation of hiding) Optimisedvariable
tp Time to predator atta
k (relative to time when intruder is
hased away) 0-7000
p Probability of reintruder's return 0.4-0.99
ti Time of reintruder's return (relative to time when intruderis 
hased away) 400 or ran-dom
µ For reintruder with log-normal return pdf: mean oflog(return time) Log(400)
σ For reintruder with log-normal return pdf: standard devia-tion of log(return time) 0.001-1
λ For reintruder with exponential return pdf: mean of the ex-ponential distribution 2-800
β Rate of intrusion of other 
onspe
i�
s 0.00009-0.012
ρ Rate of predator leaving the area after resident hides; meantime to leave = 1/ρ. 0.005-0.05
I Initial territorial assets 0.1-4
c Rate of de
rease of reprodu
tive su

ess with time intrudersspend in territory 0.02-0.9Variables derived from the above
tip Time of reintruder's return relative to time of predator's at-ta
k(tip = ti − tp)
h Time of hiding (h = tp + th)
r Time of reemergen
e (r = tp + th + tr)examine the e�e
ts of variation in the intruder's behaviour, I have modelled return times usingtwo di�erent distributions, an exponential and a log-normal, and have generated additionalvariability in the reintruder's behaviour by modifying the parameters of these pdf's. With thelog-normal pdf, the �rst parameter (= the mean of the log (return time)) has been set equal to

log(400), to make it 
omparable to the �xed reintrusion time 
ase, and I have varied the se
ond



63parameter, the standard deviation of log(return time) (note that the mean of ti is not exa
tly400). For the exponential, I have 
hanged its mean, whi
h also 
hanges its varian
e (sin
e foran exponential distribution the varian
e is the square of the mean). Several examples of thepdf of return times are shown in Fig. 3.1.
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Figure 3.1: Examples of the probability density fun
tions (pdf's) used for the reintruder's returntime.
3.4 ResultsThe fo
us of this work is the e�e
t of a past reintrusion, whi
h 
an be evaluated 
omparing theoptimal values of th and tr with the optimal values for an identi
al situation without reintruder(i.e., when only other 
onspe
i�
s 
an invade). Thus, I �rst examine the e�e
ts of havingonly other 
onspe
i�
s on optimal th and tr. Next, I show the results when a reintruder isadded. Sin
e the most relevant results are those from a reintruder with sto
hasti
 behaviour, I
on
entrate on those; the results for a reintruder with �xed return time are shown in Appendix3.B (p. 82).



643.4.1 E�e
ts of other 
onspe
i�
sWhen there are no re-intruders, but only other 
onspe
i�
s, nothing is gained by delaying hidingfrom an atta
king predator. For �xed β (rate of intrusion of other 
onspe
i�
s) and ρ (predator'srate of leaving the area), the only variable that determines the time that intruders spend inthe territory is time to reemerge (tr; see expression 3.4, p. 60), and delaying hiding (th > 0)only results in in
reased mortality risk. Given a �xed loss in reprodu
tive su

ess 
aused byother 
onspe
i�
s (i.e., for a �xed tr), this loss 
an be kept 
onstant keeping tr 
onstant, butsurvivorship maximised by hiding at 0. Thus, we 
annot �nd, for any tr, any th > 0 thatwill be better than th = 0, and hen
e the optimal option is to always hide at th = 0. (Forthe other 
onspe
i�
s no information 
an be gained by delayed hiding, sin
e the probability ofinvasion of other 
onspe
i�
s is independent of past events; this di�ers from the situation witha reintruder, where information 
an be gained about the probability of a future return �seebelow). In 
ontrast to time to hide, other 
onspe
i�
s do in�uen
e time to reemerge. In
reasesin β and ρ de
rease t∗r (optimal time to reemerge): if the rate of intrusion is higher the residentought to reemerge sooner (at the expense of survivorship), and if the predator is likely to leavethe area sooner, the resident 
an reemerge sooner without in
urring in
reased predation risks.If intruders have a large depressing e�e
t on reprodu
tive su

ess (large c �
ompare a vs. band 
 vs. d in Fig. 3.2, p. 65) or if initial assets (I) are small �
ompare a vs. 
 and b vs. d inFig. 3.2�, the resident will reemerge sooner.
3.4.2 E�e
ts of the reintruderWe now add a reintruder and examine how optimal time to hide and optimal time to reemerge
hange relative to the optimal time to hide and time to reemerge when there are only other
onspe
i�
s (previous se
tion).
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Figure 3.2: Optimal time to reemerge (tr) when there is no reintruder, as a fun
tion of rateof intrusion of other 
onspe
i�
s (β), for di�erent values of predator's leaving rate (ρ), initialassets (I), and e�e
ts of intruder's time on reprodu
tive su

ess (c). The x-axis is in logarithmi
s
ale to fa
ilitate 
omparisons.3.4.2.1 Optimal time to reemergeOptimal time to reemerge (t∗r) as a fun
tion of time of predator atta
k (tp) is shown in Fig. 3.3 (p.66) and 3.4 (p. 67) for an intruder with log-normal and exponential return times, respe
tively.One major di�eren
e between the exponential and the log-normal 
ases is that in the log-normal
ase there is an initial de
rease in t∗r as the time between the end of the aggressive intera
tion andthe predator's atta
k in
reases. In other words, with a log-normal distribution of return timeswe 
an obtain a 
ounterintuitive intensi�
ation of the e�e
ts of a past aggressive intera
tion
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Figure 3.3: Optimal time to reemerge (t∗r) as a fun
tion of time to predator atta
k (tp), whentime to intruder's return (
onditional on reintruder attempting return) is log-normally dis-tributed (with mean of log(return time) = 400). For explanation of other parameters see Table3.1 (p. 62).with time: t∗r de
reases with in
reasing tp for values of tp smaller than the maximum of the pdf(about 400). In addition the range of tp's that exhibit an intuitive wearing-o� of the e�e
ts ofa past aggressive intera
tion (in
rease in t∗r with in
reasing tp) 
an be small 
ompared to the
tp's that exhibit 
ounterintuitive behaviour. In 
ontrast, if intruders' return time follows anexponential distribution (or, more generally, a pdf with maximum value at 0 and monotoni
allyde
reasing thereafter), we 
annot observe a 
ounterintuitive intensi�
ation of the e�e
ts of apast aggressive intera
tion with in
reasing time to predator atta
k: the plot for the exponential
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Figure 3.4: Optimal time to reemerge (t∗r) as a fun
tion of time to predator atta
k (tp), whentime to intruder's return (
onditional on reintruder attempting return) is exponentially dis-tributed (with mean λ). For explanation of other parameters see Table 3.1 (p. 62).
ase is like the plot for the log-normal 
ase starting at tp ≃ 400 (i.e., to the right of the maximumvalue of the pdf of the log-normal). The explanation of this pattern is the following: when themaximum of the pdf is some t > 0, as the time between tp and that t in
reases (either be
ause
tp ≪ t or tp ≫ t) the risk of a reintrusion in the near future de
reases. In other words, if thepredator atta
ks a long time before the maximum of that pdf, the resident need not worry abouta parti
ularly high risk of reintrusion for some time. Therefore, it is ne
essary to understand,at least qualitatively, the pattern of reintruder's return to make predi
tions about 
hanges inreemergen
e time with variation in time to predator atta
k.
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reasing β (e.g., 
ompare a) and 
) in Fig. 3.3 and 3.4) de
reases the e�e
ts of the rein-truder: the relative importan
e of the reintrusion be
omes smaller as the number of otherintruders in
reases, be
ause other 
onspe
i�
s (and not the reintruder) are the major threat.De
reasing the probability of reintrusion also de
reases the e�e
ts of the reintruder: the smallestpossible t∗r is larger, and t∗r rea
hes the plateau faster (i.e., at smaller tp). Likewise, in
reasingthe speed at whi
h reprodu
tive su

ess de
reases with intruders' time in the territory (i.e.,in
reasing c) or de
reasing initial assets (i.e.,de
reasing I �e.g., 
ompare a) and b) in Fig.3.3 and 3.4) de
reases the e�e
t of the reintruder: for any given β, faster loss of �tness withintrusion (or smaller initial reserves) de
reases the maximum attainable di�eren
e in t∗r (as the
t∗r in the absen
e of the reintruder is already small be
ause the high rate of intrusion of other
onspe
i�
s for
es the resident to reemerge sooner); however, the relative 
hange (or, equiva-lently, the di�eren
e of the logarithms of time to reemerge) is sometimes larger and sometimessmaller with smaller I.The varian
e of the return time of the reintruder has a strong e�e
t on t∗r. If the varian
e issmall and the predator 
omes around the time when the pdf of the reintruder return is largest(e.g., 400; see Fig. 3.1a, σ = 0.05, p. 63) the probability of the reintruder returning in thenear future is very high, and thus the e�e
ts on t∗r are strong. If the predator 
omes longbefore that time, it is unlikely that the reintruder will return before the resident has alreadyreemerged to prevent intrusions from other 
onspe
i�
s (e.g., in �g. 3.3a, p. 66, with σ = 400,at tp ≃ 200, t∗r = 70; thus, the resident is reemerging at around 270, but the reintruder isunlikely to 
ome long before 400). If the predator 
omes some time after the maximum of thepdf, it is unlikely that the reintruder will ever 
ome, given that it has not 
ome by that time. In
ontrast, with high varian
e, the probability of the reintruder 
oming in any parti
ular intervalis smaller, but this probability is spread over a larger time period (e.g., Fig. 3.1, p. 63) and evenfor large tp's the probability is still high that the reintruder will 
ome, given that it has not
ome by that time. Thus, with larger varian
es (i.e., less predi
table reintruder), the e�e
ts ofthe reintruder in reemergen
e time 
an be observed for a larger range of tp. In summary, with



69small varian
es e�e
ts of a past aggressive intera
tion are more intense, but might be observableonly for a small range of tp's.3.4.2.2 Optimal time to hideWhen the reintruder has a sto
hasti
 reintrusion time, delaying hiding is never optimal, ex
eptfor extremely small varian
es (e.g., Fig. 3.5) and low rate of intrusion of other intruders andonly over a very small range of times to predator atta
k. To make delaying hiding optimal, thede
rease in territorial 
osts and information gain has to be large enough to 
ompensate the fastin
rease in the risk of mortality from delaying hiding. This 
an only be a
hieved if (1) thereis almost 
ertainty about the reintruder's return (varian
e 
lose to zero � the estimate of theprobability of reintrusion is updated using Bayes theorem [eq. 3.A.2, p. 80℄ and thus with smallvarian
es delaying hiding 
an provide a lot of information about the future probability of thereintruder's return) and (2) the loss of reprodu
tive su

ess from a reintruder has a major e�e
ton �tness (e.g., when the rate of intrusion of other 
onspe
i�
s is very low and initial territorialassets are small).3.5 Dis
ussionThis paper shows that risk of intrusion of 
onspe
i�
s 
an have large e�e
ts on some 
ompo-nents of the antipredator strategy: in
reased intrusion risk results in a de
rease in time untilreemergen
e from a refuge. When there is no threat from a reintruder but only risk of intrusionfrom other 
onspe
i�
s, the optimal strategy (e.g., Fig. 3.2, p. 65) is to hide as soon as thepredator atta
ks (i.e., not to delay hiding) and to modify time to reemerge as a fun
tion ofthe threat of invasion (larger numbers of intruders result in shorter reemergen
e) and initialresour
es (the higher the value of initial resour
es, the later an animal 
an a�ord to reemerge,as predi
ted from the asset-prote
tion prin
iple �Clark, 1994). The main fo
us of this paper
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Figure 3.5: Examples of optimal time to hide (t∗h), as a fun
tion of time to predator atta
k (tp),when time to intruder's return (
onditional on reintruder attempting return) is log-normallydistributed (with mean of log(return time) = 400, β = 0.001, ρ = 0.05, c = 0.4, I = 0.5).are the e�e
ts of a past aggressive intera
tion when intruders are persistent. In the presen
eof a reintruder, as was the 
ase in the absen
e of a reintruder, the optimal strategy almostalways involves hiding as soon as the predator atta
ks . However, reemergen
e time 
an bestrongly a�e
ted by the possibility of a 
onspe
i�
 reintrusion. The extent of these e�e
ts willbe modi�ed by the time of the predator's atta
k and the behaviour of the reintruder (e.g., Fig.3.3, p. 66 and 3.4, p. 67). Timing of atta
k of the predator and behaviour of the reintruder playa key role be
ause the in
rease in territorial 
osts of intrusion is a 
onsequen
e of a transientin
rease in the probability of reintrusion. As this probability in
reases, behaviour is modi�ed



71(earlier reemergen
e) at the expense of in
reased mortality risk, but it eventually returns to thesame levels as in the absen
e of reintrusion.3.5.1 Why not to delay hidingFlight initiation behaviour (measured either as time to hide or approa
h or �ight distan
e)has been shown empiri
ally to respond to variation in predation risk (e.g., Bauwens & Thoen,1981; Bulova, 1994; Cooper,1997; see review in Lima & Dill, 1990; Lima, 1998), but few studieshave examined the e�e
ts of non-predatory fa
tors su
h as in
reased 
ost of �ight (Lima, 1998).Most eviden
e of delayed hiding with higher 
osts of hiding is limited to a few 
ases related toforaging 
osts of �ight (see Lima, 1998, p. 237; Ydenberg & Dill, 1986, pp. 237-239). Re
entempiri
al work has do
umented delayed hiding in mate guarding males (Cooper, 1997, 1999) andanimals involved in ongoing aggressive intera
tions (Bri
k, 1998; Cooper, 1999; Díaz-Uriarte,1999, experiment 2; Jakobsson et al., 1995). In addition, the model of Ydenberg & Dill (1986)predi
ts that time to initiate �ight should in
rease with in
reasing 
ost of �ight.However, delaying hiding is rarely optimal in this model, whi
h agrees with the empiri
alresults of Díaz-Uriarte (1999) where male Tropidurus hispidus do not in
rease time to initiatees
ape if a predator atta
ks 5 min after an intruder is evi
ted from their territory; the predi
tionsof this model, however, do not agree with the results of Díaz-Uriarte & Marler (in prep.) wherethere is also an in
rease in the delay to hide. In this model, delaying hiding 
an a�e
t intrusionin two ways. First, delaying hiding prevents the invasion of both other 
onspe
i�
s and thereintruder be
ause while the resident is out of the refuge the intruders 
annot su

essfullyinvade the territory. Se
ond, delaying hiding serves to gain information about the reintruder'sprobability of return based upon the reintruder not having attempted to reinvade by the timethe resident goes into hiding (the probability of reintrusion is updated using Bayes theorem�see expression 3.A.2, p. 80; no information 
an be gained about the other 
onspe
i�
s, as theprobability of invasion by other 
onspe
i�
s is independent of past invasions). Information about



72the reintruder's probability of return is valuable if it 
an modify future behaviour (Stephens,1989; also Mangel, 1990), su
h as reemergen
e time. If the resident hides with a new estimate ofthe probability of future reintrusion very 
lose to zero, time to reemerge 
ould be mu
h longer,therefore de
reasing mortality at reemergen
e. Nevertheless, in most 
ases neither the de
reasein intrusion 
osts nor the gain of information about the intruder's probability of return justifydelaying hiding. These result depend on the atta
k of the predator being generally a very fastevent, so that the small de
rease in intrusion 
osts and/or the added information about thereintruder's likely behaviour 
annot 
ompensate the fast in
rease in mortality risk that resultsfrom delaying hiding.The parti
ular parameter values and fun
tions used in this model a�e
t the numeri
al resultsbut do not 
hange the qualitative 
on
lusions. The main qualitative results only depend on,(1) that survivorship be a monotoni
ally de
reasing fun
tion of time to hide and (2) that therate of de
rease in survivorship with time to hide be faster than the rate of information gain(itself a fun
tion of the varian
e of reintruders' return). Both 
onditions are likely to hold inmost biologi
al systems.What, then, explains the di�eren
es between the predi
tions of my model and those fromthe model of Ydenberg & Dill (1986) and the empiri
al �ndings of Bri
k (1998), Cooper (1999),Díaz-Uriarte (1999; experiment 2), Díaz-Uriarte & Marler (in prep.) and Jakobsson et al.(1995)? On the one hand, in Ydenberg & Dill's (1986) model there is always a 
ost to �eeingfrom predators (for example, loosing a very pro�table prey item); in my model, the 
ost doesnot arise from �eeing itself but from hiding (whi
h also explains why, in my model, when thereis no reintruder delaying hiding 
an never be optimal). On the other hand, all of the empiri
aleviden
e, ex
ept for Díaz-Uriarte & Marler (in prep.), deals with animals a
tively engaged ina �ght. In those situations the animals are fa
ing an a
tual intrusion, and not just risk of aprobable intrusion sometime in the future; when the animal is engaged in an ongoing �ght �eeingitself (and not just hiding time) has a 
ost, as in the model of Ydenberg & Dill (1986), and this
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ost 
ould be mu
h higher if the approa
hing predator is not an atta
king one (Díaz-Uriarte,1999).Nevertheless, there are other 
osts of hiding soon su
h as interrupting foraging (e.g., Yden-berg & Dill, 1986; Lima, 1998) and degrading information a
quisition (interrupting sampling�e.g., Dall et al., 1999) that have not been 
onsidered in this model. Moreover, these 
osts
ould be 
omparatively high if the approa
hing predator is not an atta
king one (Díaz-Uriarte,1999; see also Lima & Dill, 1990), whereas in the present model the approa
hing predator wasalways atta
king. Finally, delaying hiding when there is un
ertainty about the predator's in-tentions (atta
king vs. non-atta
king) 
ould a
tually provide information about the probabilitythat the approa
hing predator is an atta
king one and thus modify, for example, reemergen
etime. These e�e
ts are 
urrently under investigation. But the main 
on
lusion from my modelregarding �ight behaviour is that the risk of a potential intrusion, per se, will very rarely justifydelaying hiding from an atta
king predator. Interestingly, in the experiments in Díaz-Uriarte& Marler (in prep.) the predator's approa
h speed was about half of the predator's approa
hspeed in Díaz-Uriarte (1999), and thus makes more likely that these additional 
osts of hiding
ould be dete
ted. In summary, the di�eren
es with the model of Ydenberg & Dill (1986) sug-gest that trade-o�s between predation and foraging 
ould be very di�erent from those betweenpredation and territorial defen
e. Whereas in the former it is interrupting foraging that is most
ostly, in the latter 
osts arising from hiding and interruption of information a
quisition 
ouldbe the most relevant.3.5.2 Using multiple responses to 
hara
terise antipredator behaviour, andapplying and testing the modelThe above results have been obtained be
ause we have 
hara
terised antipredator behaviourusing two variables, time to hide and time to reemerge, instead of a single one (su
h as proportionof time hiding). As emphasised by Lima & Dill (1990), in the study of 
on�i
ting demands



74of antipredator behaviour it is ne
essary to identify the key behavioural de
isions involved inpredator avoidan
e; this 
ontext spe
i�
ity is a ne
essary step to guide further empiri
al workand generate testable predi
tions.The results of this paper also show that applying and extending this model requires a betterunderstanding of reintrusion patterns in nature, sin
e the re-invasion behaviour of the reintruder
an have a large e�e
t on the dete
tability of e�e
ts of a past aggressive intera
tion and the typeof 
hange of time to reemerge with variation in time to predator atta
k. Unfortunately, thereis no information about reintrusion patterns in nature. A pdf of return times with a maximumnot at zero 
reates two potential problems for empiri
al work. First, there will be a window oftimes to predator atta
k during whi
h in
reasing the time between the end of the evi
tion ofthe intruder and the predator atta
k results in a 
ounterintuitive in
rease in the e�e
ts of thepast aggressive intera
tion (as the time to reemerge de
reases �Fig. 3.3, p. 66). Se
ond, andmore importantly, the largest e�e
ts will be dete
ted around the (generally unknown) maximumof the pdf, but might be negligible shortly after the intruder is evi
ted (e.g., Fig. 3.3, p. 66).This is not a problem if the reintruders return as with an exponential distribution (or, moregenerally, a pdf with maximum value at 0 and monotoni
ally de
reasing thereafter); in this
ase, the best way to dete
t an e�e
t of past aggressive intera
tions is to expose the resident toa simulated predator atta
k shortly after the resident has evi
ted a reintruder (Fig. 3.4, p. 67).An in
rease in predation exposure following an aggressive en
ounter emphasises that a sim-ilar fun
tional explanation, adaptive response by a territorial resident to a transient in
reasein the probability of intrusion, 
ould underlie di�erent behavioural phenomena: past aggressiveintera
tions are known to in
rease the time invested in territorial vigilan
e (e.g., great tits:Ydenberg & Krebs, 1987; Ka
elni
k et al., 1981) and the frequen
y of territorial displays (e.g.,the lizards S
eloporus jarrovi and Urosaurus ornatus; Moore, 1987; Thompson & Moore, 1992),and in a wide range of taxa (e.g., Adamo & Hoy, 1995; Chase et al., 1994) past experien
es ofvi
tory make winning future en
ounters more likely. In addition, the 
onsequen
es of past ag-



75gressive intera
tions are re
eiving in
reased theoreti
al attention (e.g., Johnstone & Dugatkin,2000), but this is, to my knowledge, the �rst theoreti
al work to relate past aggressive inter-a
tions with antipredator behaviour. Given the potentially far-rea
hing 
onsequen
es of thesee�e
ts, and their 
onne
tions to other behavioural and e
ologi
al phenomena, it is expe
tedthat the present paper will spur further theoreti
al and empiri
al work.3.6 A
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78Appendix 3.A: expe
ted a

umulated time that intruders spendin the territory
3.A.1 Time spent by other 
onspe
i�
s
If the presen
e of a predator does not a�e
t the entry of intruders, the expe
ted total timethat the other 
onspe
i�
s a

umulate within a territory in the absen
e of the territory owneris given by

E

[
∫ r

h

N(t) dt

]

=

∫ r

h

E [N(t)] dt =

∫ r

h

β(t − h) dt = β
(r − h)2

2
(3.A-1)where N(t) is the number of other 
onspe
i�
s by time t, h is the time at whi
h the animalhides (i.e., tp + th), and r is the time at whi
h the animal reemerges (i.e., tp + th + tr); the �rstequal sign (inter
hange of order of integration and expe
tation) follows from Fubini's theorem(e.g., Williams, 1991, 
h. 8) and the se
ond results from dire
t substitution of the expe
tedvalue of a Poisson random variable. On
e intruders are present in the territory they no longerleave.Expression 3.A-1 needs to be modi�ed be
ause no intruder 
an enter the territory while thepredator is in the area; therefore, the starting time of the pro
ess is not h, but a random variable,

z, whose pdf is the pdf of the time at whi
h the predator leaves the area (i.e., fZ(z) = ρe−ρ(z−h)).Then, using 
onditional expe
tation (E[Y ] = E[E[Y |Z]] =
∫

E[Y |Z = z]fZ(z) dz) the expe
tedtotal time that the other 
onspe
i�
s a

umulate is given by
∫ r

h

β
(r − u)2

2
ρ e−ρ(u−h) du =

∫ tr

0
β

(tr − s)2

2
ρ e−ρs ds =

β

ρ2
−

β

ρ2eρtr
−

βtr
ρ

+
βt2r
2

. (3.A-2)



793.A.2 Time spent by the reintruderFirst, suppose that, 
onditional on the reintruder attempting a return, the reintruder returntime is �xed (i.e., the pdf of t is 1 for t = ti and 0 otherwise). De�ne tip = ti − tp as the time atwhi
h the intruder returns with respe
t to the predator atta
k. Sin
e the reintruder 
an onlyinvade su

essfully if the resident is hiding and the predator is not present, the expe
ted timespent by the reintruder is given by
(r − ti)(1 − e−ρ(ti−(tp+th)))p = (tr + th + tpi)(1 − e−ρ(tip−th))p, (3.A-3)whenever th < tip < (tr + th), and 0 otherwise.If time when the reintruder attempts to return, ti, has a pdf fT (ti), then the expe
ted timethat the reintruder spends in the territory 
an be found as follows. The random variable ofinterest is not ti but the time that the reintruder spends in the territory, given by r− ti. De�nea random variable X that takes the value r− ti when the reintruder su

essfully reinvades, and0 otherwise (i.e., if the reintruder never attempts to return, or if it attempts to return while theresident is hiding �between r and h� but is unsu

essful be
ause the predator is present), so

0 ≤ x ≤ r − ti. We are interested in the expe
ted value of X 
onditional on the reintruder nothaving attempted a return by h = tp + th. The expe
tation 
an be written as
E[X|No attempted invasion by h] =

E[X|(No attempted invasion by h) ∩ (Attempted invasion)]

PAttempted invasion|No attempted invasion by h . (3.A-4)Eq. 3.A-4 
omes from the relationship
E[X|A] = E[X|A ∩ B]P [B|A] + E[X|A ∩ Bc]P [Bc|A], (3.A-5)



80where X is a random variable and A and B are events or sets, ∩ denotes interse
tion of events,and c denotes the 
omplement. To derive eq. 3.A-4 from eq. 3.A-5 note that X takes value 0when no attempted invasion, or
E[X|(No attempted invasion by h) ∩ (No attempted invasion)] = 0.To evaluate eq. 3.A-4 we will need

P{No invasion by h} = (1 − p) + p(1 − FT (h)) = 1 − pFT (h)where FT (t) is the 
umulative distribution fun
tion of time to reintrusion. Thus,
P{Attempted invasion|No attempted invasion by h} =

1 − P{No attempted invasion|No attempted invasion by h} =(from Bayes theorem) 1 −
1 − p

1 − pFT (h)
=

p(1 − FT (h))

1 − pFT (h)
. (3.A-6)We need to obtain the pdf f(X|(No attempted invasion by h)∩(Attempted invasion))(x) to 
ompute the ex-pe
tation in (3.A-4). In what follows I only show the pdf for 0 < x ≤ r−h, be
ause when x = 0it does not 
ontribute to the expe
tation; in this interval fX(x) = fT (r − x) (e.g., Roussas,1997, pp. 215 & �.). Hen
e, for 0 < x ≤ r − h or, equivalently, 0 < x ≤ tr, and using thede�nition of 
onditional pdf (e.g., Roussas, 1997, pp. 93 & �.),

f(X|(No attempted invasion by h)∩(Attempted invasion))(x) =
pfT (r − x)

p(1 − FT (h))
P{No predator at r − x};(3.A-7)where

P{No predator at r − x} = 1 − e−ρ(r−x−h) = 1 − e−ρ(tr−x), (3.A-8)



81from expression 3.2 and sin
e the pro
ess of the predator leaving starts at the time the residenthides (h). Finally, substituting (3.A-8) into (3.A-7), using (3.A.2) in (3.A-4), applying thede�nition of expe
tation to the random variable in (3.A-7), and simplifying and showing resultsin terms of th and tr, we obtain
E[X|No attempted invasion by tp+th] =

p

1 − pFT (tp + th)

∫ tr

0
xfT (tp + th + tr − x) (1 − e−ρ(tr−x)) dx. (3.A-9)In all the �gures shown in this paper, I evaluated this integral using numeri
al integration.



82Appendix 3.B: Results for reintruders with �xed reintrusion timeThis appendix shows the results for optimal time to hide and optimal time to reemerge whenthe reintruder has a �xed time of return. These results are similar to those that we 
an obtainfor a sto
hasti
 intruder with varian
e of return time almost zero. To make these results
omparable to those of sto
hasti
 reintruders, I have set the time of return at 400. The maindi�eren
e between these results and those from a sto
hasti
 intruder are that, in this 
ase, we
an appre
iate the e�e
ts of the predator pre
luding the reintruder's return.3.B.1 Optimal time to reemergeFig. 3.6 (p. 83) shows optimal time to reemerge, t∗r, as a fun
tion of tp for di�erent 
ombinationsof β, ρ , I, and c when ti = 400. To explain the results I will refer to two points in Fig. 3.6, t1and t2 that divide the range of tp into three distin
t regions, and are the tp's that 
orrespond tothe minimum and maximum t∗r. A tp > 400 means that the predator is initiating its atta
k afterthe intruder is s
heduled to 
ome and thus t∗r is the same as if there were no reintruder. If thereintruder 
omes shortly after the predator atta
ks (t1 < tp < 400) t∗r is large: it is very unlikelythat the reintruder will invade the territory (as that 
an only happen if the predator is no longerpresent), and thus the resident 
an reemerge late; for example, with de
reasing ρ the predatoris likely to stay longer, whi
h results in larger t∗r at tp 
lose to 400 �see Fig. 3.6b vs. 3.6a. For
t2 < tp < t1, t∗r de
reases linearly with tp: the resident is reemerging at ti (t∗r = tip = 400−tp) sothat the reintruder does not a

umulate any time in the territory. For tp < t2, t∗r is not a�e
tedby 
hanges in tp: to prevent further in
reases in territorial 
osts from the other 
onspe
i�
s'intrusions the resident is reemerging before the reintruder is s
heduled to 
ome, and t∗r is thesame as if there were no reintruder.In
reasing β in
reases the number of 
onspe
i�
s that 
an intrude per unit time, and de-
reases the sensitivity of t∗r to 
hanges in tp, be
ause the e�e
t of the reintruder de
reases
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Figure 3.6: Optimal time to reemerge (t∗r) as a fun
tion of time to predator atta
k (tp), whentime to reintruder's return (ti) is 400. Points t1 and t2 (panel 
) divide the range of tp intothree regions: when t1 < tp < 400 t∗r in
reases as tp in
reases; for t2 < tp < t1 t∗r = 400− tp; for
tp < t2 the behaviour of the resident is insensitive to the past aggressive intera
tion (t∗r doesnot depend on tp). Values of tp > 400 
orrespond to the predator atta
king after the reintruderis s
heduled to 
ome, and thus t∗r is the same as in the absen
e of a reintruder (i.e., there areno e�e
ts of reintrusion).relative to other 
onspe
i�
s. The largest possible di�eren
e in t∗r (between points t1 and t2) issmaller be
ause t2 is shifted to the right; in other words, as we in
rease β the tp at whi
h theresident's behaviour is no longer a�e
ted by the reintruder is larger. De
reasing I also de
reasessensitivity to the reintruder (Fig. 3.6a vs. 3.6
) as does in
reasing c (Fig. 3.6
 vs. 3.6d): if initialassets are small or loss of reprodu
tive su

ess fast, the reprodu
tive su

ess that a resident
an a�ord to loose to intrusion de
reases; this 
auses the maximum t∗r to de
rease: t2 is shifted



84to the right and this is not 
ompensated by the small de
rease in t∗r at t1. However, 
hangesin I and c do not make the reintruder less important relative to the other 
onspe
i�
s: theysimply magnify the e�e
t of any territorial losses. Finally, in
reasing tp (i.e., staging a predatoratta
k a longer time after an intruder is 
hased away) will de
rease t∗r whenever t2 < tp < t1;this is 
ounterintuitive, be
ause the e�e
t of a past aggressive intera
tion be
omes stronger (t∗rsmaller 
ompared to a situation without reintruder) as the predator atta
ks a longer time afterthe intruder was 
hased away. The 
ause of this 
ounterintuitive result is di�erent from the
ounterintuitive result for a reintruder with log-normal return time shown in Fig. 3.3 (p. 66).Finally, the �intuitive� result of a wearing-o� of the e�e
ts of a past aggressive intera
tion as tpin
reases is only observed for 400 < tp < t1, but this region (400 < tp < t1) might be small.3.B.2 Optimal time to hideWith a reintruder that returns at a �xed time (ti), optimal time to hide, t∗h, 
an only taketwo values: 0 and tip (the time at whi
h reintruder attempts to return relative to predator'satta
k). When th is 0, the resident avoids mortality risks from predation during the initialatta
k. When th = tip (i.e., delayed hiding) the resident prevents the reintruder from 
omingba
k (as the reintruder 
an only 
ome ba
k if th < tip < (tr + th)). No other value of th 
an beoptimal; any value of th between 0 and tip exposes the resident to predation without preventingthe reintruder from returning, and values of th > tip result in in
reases in mortality risk withrespe
t to th = tip with no further redu
tion in territorial intrusion risk. Delaying hiding willalso allow the resident to reemerge later than if it had hid at 0 as the re-intruder is no longera threat and reemergen
e is only di
tated by the rate of intrusion of other intruders.Fig. 3.7a (p. 85) shows t∗h as a fun
tion of time to predator atta
k (tp) when ti = 400 forthree di�erent β's. In every 
ase, when tp < 390 then tip > 10 and thus t∗h is always 0: delayinghiding in these 
ases would require delaying hiding for more than 10 time units, whi
h resultsin no survivorship. When tp > 400 the predator is atta
king after the reintruder is s
heduled
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Figure 3.7: Optimal time to hide, t∗h. a) E�e
ts of time to predator atta
k (tp) on t∗h whenthe reintruder is s
heduled to 
ome at ti = 400. In the 
ase represented, for instan
e, when
β = 0.002, the resident will delay hiding if 396 < tp < 400 (see text for explanation), and thedelay will be equal to tip = 400 − ti; at any other values the resident will hide immediately(th = 0). b) Maximum tip (time or reintruder's return relative to the atta
k of the predator)at whi
h a resident will delay hiding, as a fun
tion of rate of intrusion of other 
onspe
i�
s(β) for di�erent values of predator's leaving rate (ρ) and initial assets (I). The value shown inthe �gure is the largest tip for whi
h �tness is larger when th = tip 
ompared to th = 0. Forany intruder returning at a tip below the line, the resident's optimal behaviour will be to makemake th = tip; for any tip above the line the optimal th will be zero.to 
ome, so the reintruder is no longer a threat and thus t∗h is 0. For 390 < tp < 400 it mightbe optimal to delay hiding; in this region t∗h 
an be either 0 (no delayed hiding) or tip; thus,the line in Fig. 3.7a has a slope of -1 (t∗h = tip = 400 − tp). In general, it is more likely thatdelaying hiding will be optimal at small tip: here, delaying hiding does not represent a largein
rease in mortality, whereas for large tip the mortality risk of delaying hiding will be very



86large). However, delaying hiding, if at all, will only be observed in a small range of values of tp(when the predator atta
ks shortly before the reintruder is s
heduled to 
ome). Fig. 3.7a and balso shows the e�e
ts of β on t∗h = tip. As the rate of intrusion of other 
onspe
i�
s in
reases,the relevan
e of the reintruder de
reases, and thus it be
omes less worthy of in
reasing mortalityrisks. The optimal time to delay hiding depends also on the e�e
t of intruders on reprodu
tivesu

ess (c), the initial territorial assets (I), and the predator's behaviour (ρ) (Fig. 3.7b).



87Chapter 4
Cross-over trials in animal behaviour.I: Misuse, 
arry-over e�e
ts, and design
4.1 Abstra
tCross-over trials (experiments where ea
h experimental unit re
eives two or more treatmentsthrough time) are frequently used in animal behaviour studies as they allow experiments withrelatively small numbers of subje
ts that nonetheless a
hieve high statisti
al power by usingea
h subje
t as its own 
ontrol. However, 
ross-over trials are often analyzed in
orre
tly inthe behavioural literature; the major problems are failure to 
onsider period and 
arry-overe�e
ts. In this 
hapter I �rst show these problems by using arti
les published in twelve issuesof Animal Behaviour (July 1998 to June, 1999); 22 papers use 
rossover designs in at least oneexperiment, but be
ause of potentially inappropriate analyses the 
on
lusions in ea
h of thesepapers are questionable. In addition, statisti
al textbooks frequently used by behaviouristseither do not mention 
ross-over designs or provide potentially misleading advi
e. In this paperI explain why the usual analyses of 
ross-over trials (paired t-tests or non-parametri
 analogues)are often inappropriate, then dis
uss the problems asso
iated with 
arry-over e�e
ts, and �nallyreview the design of 
ross-over trials. If design and wash-out periods are given the appropriate
onsideration, 
ross-over designs 
an be very powerful tools for behaviourists whenever obtainingnew subje
ts is more 
ostly than repeatedly testing the same individual, and thus 
ross-overdesigns 
an be useful in parti
ular for resear
hers working in the lab or in �eld en
losures where



88animals require lengthy training or habituation4.2 Introdu
tionIn 
ross-over trials ea
h experimental unit re
eives two or more treatments through time; inthe simplest 
ase of two treatments, the subje
t is �rst given one of the treatments and then
rosses over to the other treatment (Jones and Kenward, 1989 �hereafter JK�; Ratkowsky et al.,1993 �hereafter REA�; Senn, 1993 a �hereafter SN�; Vonesh & Chin
hilli, 1997). Thus, 
ross-over studies di�er from parallel studies where ea
h subje
t is exposed to the same treatmentfor the duration of the experiment. In 
ross-over trials at least one key 
ovariate (treatment)
hanges within-subje
t over time. As the 
omparison of treatments is made within subje
ts,ea
h subje
t a
ts as its own 
ontrol whi
h in
reases statisti
al power to dete
t a treatmente�e
t (e.g., Crowder & Hand, 1990, p. 101; SN, pp. 201 & �.). This is parti
ularly importantwhen repeated testing of one subje
t is mu
h simpler than re
ruitment of new subje
ts. Forthese reasons, 
ross-over trials are frequently used in behavioural experiments.However, 
ross-over trials are often analysed inappropriately, as if they were mat
hed pairsor "typi
al" repeated-measures designs, whi
h they are not. The main problems are, �rst, nota

ounting for period e�e
ts (whi
h leads to the inappropriate use of paired t-tests in the two-treatment, two-period 
ase) and, se
ond, failure to 
onsider 
arry-over e�e
ts. (A treatmente�e
t is the e�e
t of a treatment at the time of its appli
ation, whereas 
arry-over e�e
ts aree�e
ts of a treatment that persist after the end of the period, and a period is ea
h one of theo

asions in whi
h a treatment is applied; see �Terminology�, p. 90.)For instan
e, in the twelve issues of Animal Behaviour from July, 1998 to June, 1999, thereare 22 arti
les that use 
ross-over designs in at least one experiment. Eight of these papersuse variants of the two-treatment, two-period design (generally the typi
al 2x2 design); 17papers use designs for more than two treatments. Results are analysed with paired t-tests or



89Wil
oxon's signed-rank test for 2 treatment designs, or with linear models (usually referred toas "repeated measures ANOVA" or in some 
ases mixed-e�e
ts models), and on a few o

asionswith methods spe
i�
 for 
ategori
al data. Only two studies expli
itly 
onsider period e�e
ts(order of presentation), and one mentions that there are "no e�e
ts of order of presentation"(although the test is not explained); but no paper explains how potential 
arry-over e�e
ts aredealt with. Counterbalan
ing (ea
h treatment appears in ea
h period the same number of times)is used in 11 papers. When 
ounterbalan
ing is not used, order of presentation is "randomized."Thus, it seems that most authors believe that 
ounterbalan
ing or "randomization" of orderof presentation, per se, will take 
are of any other nuisan
es (periods and 
arry-overs); but,as we will see, this is not true. Authors seem unaware that 
arry-over e�e
ts 
an bias their
on
lusions. The pra
ti
al 
onsequen
es of the analyses used in these papers are that: a) ifthere are 
arry-over e�e
ts, all reported results 
ould be biased; b) even in the absen
e of 
arry-over e�e
ts, in the studies that do not use 
ounterbalan
ing the estimates of treatment e�e
tsare biased if there are period e�e
ts; 
) in studies that use 
ounterbalan
ing, the estimates ofthe varian
e of treatment e�e
ts are overestimated if there are period e�e
ts. Therefore, the
on
lusions rea
hed in every one of these papers are questionable: the la
k of e�e
ts reported insome studies 
ould be the 
onsequen
e of in�ated varian
es, and the signi�
ant e�e
ts reportedin other experiments 
ould be the result of either period or 
arry-over e�e
ts.Statisti
s textbooks used by behaviourists su
h as Colgan (1978), Lehner (1979), Bart et al.(1998), Bailey (1995), Campbell (1989), and Sokal & Rohlf (1995) do not mention 
ross-overdesigns. Other texts provide potentially misleading advi
e; Martin and Bateson (1993, p. 29-30) apparently would use a paired test to analyse a 2x2 design; Zar (1996, p. 259-263) analysesa 
ross-over design, and refers to 
arry-over, but he fails to mention that period should bein
orporated in the analyses, and seems to imply that 
ounterbalan
ing, per se, 
an eliminateproblems from 
arry-over e�e
ts; Edgington (1995) suggests 
ounterbalan
ing (pp. 114-117)to prevent undesired e�e
ts from order of presentation; Zolman (1993), although expli
itlymentions 
ross-over designs and dis
usses 
arry-over e�e
ts (pp. 59-63), apparently suggests



90that a paired t-test is appropriate for a 2x2 design (p. 160).The 22 examples from one year of Animal Behaviour show that 
ross-overs, a powerfuland widespread type of design, are often analysed inappropriately; and the textbook examplesindi
ate that information on the appropriate design and analysis of 
ross-over trials is nota

essible to animal behaviour resear
hers. Thus, the main obje
tive of this paper is to makeanimal behaviour resear
hers (and reviewers) aware of the most important pitfalls in the designand analysis of 
ross-over trials. I �rst explain why the usual analyses of 
ross-over trials inanimal behaviour resear
h are inappropriate, then I dis
uss the problems of 
arry-over e�e
ts,next I review the design of 
ross-over trials, and I 
on
lude with a dis
ussion on when touse 
ross-over designs in behavioural e
ology experiments. In a di�erent paper (Díaz-Uriarte,in review �next 
hapter�; hereafter DU2) I review the statisti
al methods available for theanalysis of data from 
ross-over experiments in animal behaviour resear
h.
4.3 TerminologyBefore we 
an understand the problems of some of the analyses of 
ross-over trials, we need tode�ne a few terms. A dire
t treatment or simply treatment e�e
t is the e�e
t of a treatmentat the time of its appli
ation. A period is ea
h one of the o

asions in whi
h a treatment isapplied. Carry-over e�e
ts are e�e
ts of a treatment that persist after the end of the treatmentperiod; in other words, the response to a 
urrent treatment is a�e
ted by what treatment wasapplied in a previous period. A sequen
e is the order in whi
h the within-individual treatmentsare applied. Designs will be referred to using sequen
es, su
h as ABB,BAA, whi
h means thatanimals assigned to the sequen
e ABB are �rst given treatment A (1st period), then B (2ndperiod), then B (3rd period), and animals assigned to the BAA sequen
e are �rst given B, thenA, then A (1st, 2nd, and 3rd periods, respe
tively). Designs are examined in detail later.



914.4 Example of the �usual� analyses and their problemsThe 2x2 
ross-over design (the design with sequen
es AB,BA) is frequently analysed using apaired t-test; this is equivalent to subtra
ting the response value under treatment B from theresponse value under treatment A for ea
h individual and testing whether the mean is signif-i
antly di�erent from 0 with a one sample t-test. However, in many behavioural experimentsperiod has an e�e
t: whether a response is measured on the �rst or se
ond o

asion, per se, willa�e
t the value of the response (e.g., through habituation). With period e�e
ts the analysisabove is inappropriate for two reasons (SN, p. 38; also S
hneider, 1983). First, if there are un-equal numbers of subje
ts in ea
h sequen
e, the test and the estimate of treatment e�e
ts willbe biased. (Bias means that the expe
ted value of the estimator is not equal to the parameterwe are trying to estimate; bias does not de
rease with in
reasing sample size). Se
ond, evenif there are equal numbers of subje
ts in ea
h sequen
e, we lose power: period is a systemati
trend, but by lumping together animals from both sequen
es, we are as
ribing this systemati
variation to the random 
omponent (the error term) and the standard errors of our estimateswill be in�ated. This se
ond problem is similar to ignoring the e�e
ts of blo
king (a knownsour
e of variation).To better understand these problems it is 
onvenient to write down an expli
it expressionfor the statisti
al model (e.g. JK):
yijk = µ + sik + πj + τd[i,j] + eijkwhere µ is the inter
ept, πj is the period e�e
t of period j =1,2, τd[i,j] is the dire
t treatmente�e
t of the treatment given in period j of sequen
e i, sik is the random subje
t e�e
t of subje
tk in sequen
e i, and eijk is the random error for subje
t k in period j in sequen
e i (for themoment we ignore 
arry-over e�e
ts). From that model, the �xed e�e
ts for ea
h period andsequen
e for a 2x2 design are shown in Table 4.1 (p. 92).



92Table 4.1: Fixed-e�e
ts for the 2x2 design. In this table, 
arry-over e�e
ts have not beenin
luded; in
luding them would result in the �xed e�e
ts for period 2 being µ + π2 + τ2 + λ1and µ + π2 + τ1 + λ2 , in sequen
es AB and BA respe
tively.Sequen
e group Period 1 Period 2AB µ + π1 + τ1 µ + π2 + τ2BA µ + π1 + τ2 µ + π2 + τ1The expe
ted value of the di�eren
e A-B for animals from sequen
e AB (dABAB) is (τ1 −

τ2)+(π1−π2), and the expe
ted value of the di�eren
e A-B for animals in sequen
e BA (dABBA)is (τ1 − τ2) + (π2 − π1). The paired t-test is the same as testing if the set of all dABAB and
dABBA are 
entered around zero, using a one-sample t-test. If there are more animals in ABthan in BA, our estimate of treatment e�e
ts (τ1 − τ2) will be biased by a fa
tor proportionalto (π1 −π2); when the sample sizes of both sequen
es are the same, there will be no bias in theestimate of the treatment e�e
t, but the error term will be in�ated by a term proportional to
(π1 − π2)

2. Thus, a paired test results in biased estimates of treatment e�e
ts and/or in�atedvarian
e estimates; 
ounterbalan
ing, per se, does not result in a 
orre
t analysis, 
ontrary towhat is sometimes believed.To prevent these problems, we should use the Hills-Armitage approa
h, illustrated in Table4.2 (p. 93) and des
ribed in more detail in JK (p. 23-28), SN (p. 42-44), and Crowder & Hand(1990, p. 101). We take period di�eren
es (subtra
t period 2 from period 1) for both sequen
es,yielding d12AB and d12BA for animals from sequen
es AB and BA respe
tively. The expe
tedvalues of these di�eren
es are: E(d12AB) = (τ1−τ2)+(π1−π2), E(d12BA) = (τ2−τ1)+(π1−π2).We 
an test for treatment di�eren
es 
omparing the means of d12AB and d12BA (d12AB and
d12BA) between the two sequen
es (e.g., a two-sample t-test). De�ne τ̂ = 0.5(d12AB − d12BA);its expe
ted value is (τ1 − τ2) (so there is no bias) and the varian
e 
ontains only a term forthe within-individual errors (see expression in JK, p. 26). In other words, to test for treatmentdi�eren
es we 
ompute the mean between the �rst and the se
ond period for ea
h individual,and then we use a two-sample t-test to 
ompare these values between the two sequen
es. This



93Table 4.2: Simulated data (
olumns three and four) for a 2x2 trial. A 
ommon (in
orre
t)analysis of treatment e�e
ts uses a paired t-test, whi
h is the same as testing if the 
rossoverdi�eren
es are 
entered around zero. The Hills-Armitage approa
h 
ompares period di�eren
esbetween the two sequen
e groups.Sequen
e Subje
t Period 1 Period 2 Period Crossoverdi�eren
es di�eren
es
d12AB dABABAB 1 16.5 11.1 5.4 5.4AB 2 14.9 9.2 5.7 5.7AB 3 14.2 6.9 7.3 7.3AB 4 20.6 13.8 6.8 6.8AB 5 18.2 12.8 5.4 5.4
d12BA dABBABA 6 15.0 13.3 1.7 -1.7BA 7 13.9 9.8 4.1 -4.1BA 8 9.8 6.5 3.3 -3.3BA 9 16.8 14.8 2.0 -2.0BA 10 14.9 12.0 2.9 -2.9method of testing for treatment e�e
ts is also 
alled the CROS test.To test for period e�e
ts, we 
ompute 
ross-over di�eren
es (di�eren
e between periods1 and 2 for subje
ts in AB, and di�eren
e between periods 2 and 1 for subje
ts in BA �equivalent to 
omputing di�eren
es between A and B for all subje
ts), and use a two-samplet-test 
omparing these di�eren
es between the two sequen
es. Finally, to test for inequalityof 
arry-over e�e
ts we 
ompare the sum of the values in the two periods between the twosequen
es (see JK, p. 24-25); note that we 
annot test for absen
e of 
arry-over e�e
ts, onlyinequality or di�erential 
arry-over e�e
ts (see next se
tion), and in the 2x2 designs di�erential
arry-over is 
onfounded with sequen
e e�e
ts. A nonparametri
 version of these tests was �rstdes
ribed by Ko
h (1972) and is explained in JK (p. 51 and �.) (but see Taulbee, 1982, for
orre
tions of expressions(4) and (6) in Ko
h, 1972 and JK, p. 27 and 56).As an example, Table 4.2 shows a set of data from an AB,BA trial (these are simulated data,



94Table 4.3: ANOVA table for the analysis of the data in Table 4.2 using split-plot (parameteri-zation as in JK, ex
ept no 
arry-over in
luded).Sour
e d.f. SS MS F p-valueBetween-subje
ts 9 130Within-subje
ts stratumPeriod (adjusted for Treatment) 1 99.5 99.5 231.7 0.0001Treatment (adjusted for Period) 1 13.8 13.8 32.1 0.0001Within-subje
ts residuals 8 3.4 0.4Total 19 246.7from a model with main e�e
ts of period and treatment and normally distributed subje
t andrandom errors). Using the paired t-test approa
h to test for treatment di�eren
es we obtain
t9=1.098, p = 0.3. Using the Hills-Armitage approa
h we obtain t8=5.666, p =0.0005 (with theHills-Armitage approa
h we have one less d.f. as this is a two-sample t-test). In this examplethe paired t-test fails be
ause there are period e�e
ts, whereas the Hills-Armitage approa
h hasno problems with the period e�e
ts.We 
an also analyse these data using a split-plot ANOVA (Table 4.3; see JK, p. 30-33).The �rst stratum is individual; the se
ond stratum is within-individual and is used for the testsof interest (treatment e�e
ts). In this ANOVA, we use as explanatory or independent variablestreatment and period, and test for treatment e�e
ts after having entered period in the model(and for period after entering treatment); these are 
alled marginal tests. In this ANOVAwe have adjusted for the e�e
ts of period by in
orporating period into the model, and thuswe obtain the exa
t same results as the Hills-Armitage approa
h (F = 32.1 = 5.6662 = t2).(However, an ANOVA that did not in
lude period would yield the same in
orre
t results as thepaired t-test).The problem of the paired 
omparison is the same regardless of whether we use a t-test,a nonparametri
 test, or a randomization test. The 
ause of the problem is not the type ofstatisti
 but failure to a

ount for the e�e
t of period. Unless there is strong eviden
e to the
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ontrary, in most behavioural experiments we should assume that period 
an a�e
t the results;in this 
ase, a paired test should not be used be
ause it is inappropriate, regardless of whetheror not 
ounterbalan
ing is used and whether or not there are the same number of subje
ts inea
h sequen
e. Problems with period e�e
ts are not limited to two-treatment 
ross-over designs,but a�e
t all other designs as well (e.g., three treatment designs).4.5 Carry-over e�e
tsA potential problem of 
ross-over designs are period*treatment intera
tions (the e�e
t of atreatment is not 
onstant over the di�erent periods). One type of period*treatment intera
tionis 
arry-over e�e
t: the response to a treatment is a�e
ted by what treatment was applied inprevious period(s), so that past treatments have e�e
ts that last, or 
arry-over, to the followingperiods. In the 2x2 design, but not ne
essarily in designs with more than two treatments orperiods, 
arry-over and any other treatment*period intera
tions are 
ompletely 
onfounded.Carry-over e�e
ts 
an bias the estimates of treatment e�e
ts and a�e
t designs with anynumber of periods and treatments. In most designs (in
luding the 2x2), the 
ause of theproblem is not 
arry-over per se, but di�erential 
arry-over e�e
ts, i.e., the 
arry-over fromdi�erent treatments being di�erent. For example, in Table 4.1 (p. 92), if there are di�erential
arry-over e�e
ts, our estimate of treatment e�e
ts using the Hills-Armitage approa
h will bebiased by λ1−λ2; if there are equal 
arry-over they will be indistinguishable from period e�e
ts,and the Hills-Armitage approa
h will be unbiased. (Using a paired t-test, di�erential 
arry-overe�e
ts will result in bias, even if there are no period e�e
ts).Contrary to what is sometimes believed, 
ounterbalan
ing does not eliminate bias 
aused by
arry-over e�e
ts, regardless of the number of treatments (e.g., Abeyasekera & Curnow, 1984).Thus, there are two strategies for dealing with 
arry-over e�e
ts: a) minimise the 
han
esthat they 
an happen; b) in
lude them expli
itly in the statisti
al model. Whi
h one of these
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hes is taken will a�e
t both the design of the experiment and the analysis of the data.For the 2x2 design, there has been 
onsiderable debate on how to deal with 
arry-overe�e
ts. In the two-stage approa
h one �rst tests for 
arry-over e�e
ts and if no 
arry-over isdete
ted one then tests for treatment e�e
ts with the CROS test (see p. 93); if 
arry-over isdete
ted only the �rst period is used and one tests for treatment e�e
ts with the PAR test (asif we were dealing with a parallel groups design). The problem is that the results from the two-stage approa
h are either the same as for CROS or have an unknown but possibly very largebias, as the results from the PAR test and the test for 
arry-over e�e
ts are highly 
orrelated(SN, p. 52-54; Grieve & Senn, 1998). This suggests that the two-stage approa
h should not beused. On the other hand, it is debatable if we 
an trust the results of the CROS test without�rst testing for 
arry-over (Jones & Wang, 1998). Tudor & Ko
h (1994; also Ko
h, 1998) haveproposed a three-stage pro
edure; it is not known if this three stage pro
edure performs mu
hbetter than the two-stage one.With more than two periods, by making some assumptions it is possible to eliminate theproblems from 
arry-over e�e
ts by in
luding 
arry-over e�e
ts in the statisti
al model. Forexample, with 1st order 
arry-over e�e
ts, some designs (strongly-balan
ed designs; see Tables4.4, p. 100 and 4.5, p. 101) result in estimators of treatment e�e
ts that are not a�e
ted bythe presen
e of 
arry-over e�e
ts. However, the assumptions that allow us to in
lude 
arry-over in the statisti
al model e�e
tively might be unrealisti
. One 
ommon assumption is theabsen
e of se
ond-order 
arry-over (i.e., e�e
ts that 
arry-over two periods after the treatmentwas applied); la
k of se
ond-order 
arry-over is frequently justi�ed arguing that se
ond-order
arry-over e�e
ts are unlikely if there are no �rst-order 
arry-over e�e
ts. A se
ond 
ommonassumption is the absen
e of 
arry-over*treatment intera
tions; 
arry-over by treatment in-tera
tions o

ur, for instan
e, when a treatment 
an 
arry-over into other treatments but it
annot 
arry-over into itself or when the e�e
t of 
arry-over depends on the treatment intowhi
h it 
arries over. Depending on the underlying biologi
al phenomena these might either be



97reasonable approximations or 
ompletely inappropriate assumptions.Senn (SN, 
h. 10) dis
ussed several reasons why models with 
arry-over e�e
ts are of nouse, emphasising that many of the above assumptions are unrealisti
. He shows that 
arry-overadjusted estimates 
an be even more biased than estimates unadjusted for 
arry-over. Thus,Senn (SN; e.g., p. 14-15; 
h. 10) advo
ates using su�
iently long times in between appli
ationof treatments (wash-out periods) so that 
arry-over e�e
ts are very unlikely, and analysing thedata without ever attempting to adjust for 
arry-over e�e
ts. The pra
titioner, however, shouldbe aware that the results are 
onditional on the assumption of no 
arry-over e�e
ts. Moreover,in many studies (e.g., 
omparison of a 
ontrol with an a
tive treatment) if 
arry-over is presentbut not a

ounted for it will tend to underestimate the treatment di�eren
e (Jones & Lewis,1995; SN, p. 102). In other words, 
arry-over will result in a de
rease in power but not anin
rease in the probability of reje
ting the null hypothesis when it is true (Type I error rate).In 
ontrast to Senn's approa
h, there is a large statisti
al literature that models 
arry-overe�e
ts (e.g., JK, REA) and some authors strongly advo
ate always in
luding 
arry-over e�e
ts(e.g., Abeyasekera & Curnow, 1984).Unfortunately, in many behavioural e
ology studies not enough information is available todetermine what is a long enough wash-out period. A pra
ti
al solution might be as follows:�rst, design studies so that 
arry-over e�e
ts are unlikely. The experimenter's attitude towards
arry-over e�e
ts should be expli
it. Se
ond, design experiments so that 
arry-over e�e
ts 
anbe in
luded in the statisti
al model, (modelling 
arry-over e�e
t in the most reasonable way).If 
arry-over turns out to be present, a design that made a provision for 
arry-over would makeit possible to salvage the experiment, and would indi
ate that future experiments might needto in
rease the wash-out period.Moreover, in some studies presen
e of 
arry-over e�e
ts after what was 
onsidered a suf-�
iently long wash-out period 
ould reveal a phenomenon of interest in its own right, sin
e a
arry-over e�e
t would indi
ate that a past experien
e is mu
h longer lasting than expe
ted (e.g.,



98e�e
ts of prior defeats in aggressive en
ounters that a�e
t �ght performan
e more than 24 hafter the defeat). Finally, in some instan
es we might 
ombine 
ross-over designs with between-subje
t designs (e.g., Díaz-Uriarte & Marler, in prep.); an intera
tion between 
arry-over andbetween-subje
ts treatment might indi
ate a potentially interesting biologi
al phenomenon. Forinstan
e, we might examine simultaneously the e�e
t of hormonal treatment (a between-subje
ttreatment) and e�e
ts of presentation of a female vs. a 
ontrol (using a 
ross-over trial). Ina study like this, an intera
tion between 
arry-over and hormone treatment would provideeviden
e that hormonal treatment has a�e
ted how long-lasting the presentation of a female is.4.6 Design of 
ross-over trialsHere I dis
uss the main designs that 
ould be useful in behavioural studies; more details areprovided in JK, SN, and REA. I will only examine designs that 
onsider period e�e
ts plausible.To maximise power, subje
ts should be allo
ated to treatments so that there are equal numbersof subje
ts for ea
h sequen
e (and this restri
tion should be re�e
ted when using randomizationtests).During the design phase, it is essential to understand how the data will be analysed. Forexample, some nonparametri
 methods for more than two treatments require that the designsbe of a spe
i�
 kind or that allo
ation of subje
ts be done in a parti
ular way; some othermethods only work with large sample sizes. These requirements might prompt one to either
hange the design, to try to allo
ate more subje
ts or allo
ate subje
ts in di�erent ways, or tomeasure di�erent response variables.4.6.1 Designs for two-treatment trials.The most 
ommon 
ross-over design is the AB,BA design. As we have seen, this design isproblemati
 in the absen
e of information about 
arry-over e�e
ts. Even when 
arry-over e�e
ts



99are not present designs with more than two periods 
an be preferable as they lead to estimatorsof treatment e�e
ts with smaller varian
e, and therefore in
rease power (e.g., the ABB,BAAdesign has a varian
e for the estimate of treatment e�e
ts whi
h is 19% of that from AB,BA�provided we use the same number of subje
ts, allo
ated in equal numbers to ea
h sequen
e).Table 4.4 (p. 100) shows three two-treatment designs, and some of their basi
 propertieswhi
h a�e
t the degree of aliasing (aliasing refers to the presen
e, in the design matrix, of
ovariates whi
h are linear 
ombinations of other 
ovariates; te
hni
ally, it refers to the amountof overlap between the subspa
es de�ned by the 
ovariates; M
Cullagh & Nelder, 1989, p. 61-68). The 
onsequen
e of aliasing is that we 
annot obtain separate estimates of ea
h parameter.Aliasing is a 
ommon problem in 
ross-over designs; the 
orrelation between parameters is anindi
ation of aliasing, and is listed for many designs in JK (and 
an also be obtained by matrixoperations from the design matrix; see, e.g., REA). For instan
e, in the design ABB,BAAthe 
orrelation between the estimate of treatment and 
arry-over e�e
t is zero, and thus theestimate of treatment e�e
ts is the same in a model with or without 
arry-over e�e
ts, whi
his a good quality if the statisti
al model in
ludes 
arry-over e�e
ts.We 
an 
lassify two-treatment designs by the number of sequen
es and the number ofperiods. Designs di�er in the varian
e of estimated treatment e�e
ts (tabulated in JK formany designs). In general, the more periods the smaller the varian
e, but when sequen
es withmany periods are used it is more likely that there will be missing data for later periods; thus,designs with more than 3 or 4 periods are not very advisable. Also, some designs are less a�e
tedby having to end a trial before it was expe
ted: if one uses a design su
h as ABBA,BAAB and
annot 
olle
t data from the last period one is left with ABB,BAA whi
h is a good design (in
ontrast with eliminating the last period from AAAB,BBBA). When only two periods 
an beused the AA,BB,AB,BA design (Balaam's design for two treatments) 
an minimise problemsfrom 
arry-over e�e
ts; however, this design might be a worse 
hoi
e than simply ensuring along enough wash-out period and using AB,BA.



100Table 4.4: Some 
ross-over designs for two treatments(see JK; de�nitions from Vonesh & Chin-
hilli, 1997 are slightly di�erent from those in Laska et al., 1983 and JK).Design Uniformwithinsequen
es1 Uniformwithinperiods2 Balan
ed3 Stronglybalan
ed4

Varian
e of theestimator oftreatment e�e
ts5 Varian
e of theestimator oftreatment e�e
tswhen 
arry-over e�e
ts arepresent5ABB,BAA No Yes Yes Yes 0.375 0.375ABBA,BAAB Yes Yes Yes No 0.250 0.275ABBA,BAAB,AABB,BBAA Yes Yes Yes Yes 0.250 0.250
1A design is uniform within sequen
es if ea
h treatment appears the same number of times within ea
hsequen
e;sequen
e e�e
ts are not aliased with treatment e�e
ts.
2A design is uniform within periods if ea
h treatment appears the same number of times within ea
h period;period e�e
ts are then not aliased with treatment e�e
ts.
3A design is balan
ed if ea
h treatment pre
edes ea
h other treatment the same number of times; in this 
ase,
arry-over e�e
ts are aliased with treatment e�e
ts. A balan
ed design, as de�ned in JK, is one that is balan
ed(as in this table), uniform within sequen
es �a
tually, ea
h subje
t re
eives ea
h treatment only on
e� anduniform within periods, and with equal number of subje
ts per sequen
e.
4A design is strongly balan
ed (or 
ompletely balan
ed) if ea
h treatment pre
edes ea
h other treatment, in-
luding itself, the same number of times; in this 
ase, 
arry-over e�e
ts are not aliased with treatment e�e
ts.
5Expressed in multiples of (σ2/Total number of subje
ts), assuming equal numbers of subje
ts allo
ated to ea
hsequen
e.Designs 
omposed of many sequen
es will be more 
ompli
ated to use, in parti
ular withlimited sample sizes, as one will need sample sizes whi
h are integer multiples of the numberof sequen
es (to have the largest power). This is more problemati
 when one uses blo
king orbetween-subje
t treatments (as one usually will want to use the 
omplete design �i.e., all thesequen
es� in ea
h blo
k or between-subje
t treatment). Designs 
omposed of dual sequen
es(i.e., pairs of sequen
es where the se
ond sequen
e is obtained by inter
hanging the treatmentlabels A and B of the �rst sequen
e) allow one to use simple and robust analysis based onwithin-individual 
omparisons (see JK, SN; also DU2). The designs in Table 4.4 (p. 100) are
omposed of dual sequen
es and are among the most useful for estimating treatment e�e
ts



101Table 4.5: Examples of 
ross-over designs for four treatments; a) Williams design; b) for everypair of treatments two sequen
es 
an be found where the treatments appear in inter
hangedperiods (e.g., in sequen
e 1, A is in the 1st period and D in the 2nd period, whereas in sequen
e4 the positions of A and D are reversed.a)Sequen
e Period1 2 3 41 A D B C2 B A C D3 C B D A4 D C A B
b)Sequen
e Period1 2 3 41 A D B C2 B C A D3 C B D A4 D A C Band also perform well under di�erent within-individual 
orrelation stru
tures (JK; Matthews,1990).4.6.2 Designs for more than two treatmentsWith more than two treatments we 
an distinguish between varian
e balan
ed (all pairwisedi�eren
es between treatments are estimated with the same pre
ision) and partially balan
eddesigns (the varian
e of the 
omparison between two treatments depends on whi
h two treat-ments are 
ompared). Partially balan
ed designs might be the best 
hoi
e when there are severalexperimental treatments and one 
ontrol and we are most interested in minimising the varian
eof 
ontrasts between ea
h experimental treatment and the 
ontrol. We 
an also di�erentiatebetween 
omplete and in
omplete blo
k designs (e.g., SN, p. 163 and �.; JK, p. 199 and �.); inthe latter the number of treatments is larger than the number of periods (so ea
h individual isnot subje
t to all the treatments). In
omplete blo
k designs are parti
ularly useful with largenumbers of treatments; however, these are mu
h more di�
ult to design and analyse, and thusare of limited interest in animal behaviour studies.If period 
an have an e�e
t (as we generally assume), designs should be uniform withinperiods (see Table 4.4, p. 100, for explanation). Designs uniform within periods 
an be based



102on Latin squares (brie�y, suppose we arrange our design as a square, with n rows and n 
olumns;then, in a Latin square we 
an apply n treatments, and ensure that ea
h treament is appliedon
e, and only on
e, in ea
h row and 
olumn; for 
ross-over designs, the rows represent sequen
esand the 
olumns represent periods). Williams designs (e.g., Table 4.5a) are also balan
ed (withrespe
t to 
arry-over; see Table 4.4). Under 
ertain assumptions, we 
an minimise problemsfrom 
arry-over e�e
ts by using extra-period designs. For example, we 
an use a Williamsdesigns to whi
h we add a period so that the last treatment is equal to the previous one (e.g., inTable 4.5, the �rst sequen
e would be ADBCC), and we obtain a strongly balan
ed design (seeTable 4.4, p. 100). However Williams and strongly-balan
ed designs might not be parti
ularlyuseful if 
arry-over is not an issue. Other designs based on Latin squares (e.g., Table 4.5b)have the property that, for every pair of treatments two sequen
es 
an be found where thetreatments appear in inter
hanged periods (SN, p. 122 and 123); this property allows us touse some nonparametri
 and multivariate analyses (see DU2). Dis
ussion of designs for threeor more treatments 
an be found in SN (
h. 5, 9, 10), JK (
h. 5), and REA (
h. 5 and 6).In general, designs for more than four treatments will require sample sizes larger than thoseavailable in most behavioural studies.The assignment of subje
ts to sequen
es (in
luding blo
king), and the ele
tion of the numberof squares, are dis
ussed in SN (p. 123 & 209-210) and JK (p. 196-197; 198-199). In a threetreatment trial, we 
an either use one or the two Latin squares (if 
arry-over e�e
ts are in
ludedin the model, we will use the two sets of Latin squares). For four treatments, either severalsquares or a single one 
an be used; the latter is generally simpler and will be less a�e
ted byloss of subje
ts.Finally, the optimality of the designs dis
ussed above depends on assumptions that mightbe inappropriate in some 
ases (e.g., when we expe
ts treatment*
arry-over intera
tion). It ispossible to 
onstru
t optimal 
ross-over designs tailored to the parti
ular assumptions of ourmodel (see Donev, 1998; Jones & Donev, 1996), and also use a sequential approa
h to trial



103design, so that assumptions 
an be in
orporated as information be
omes available.4.6.3 Between-subje
ts designs and baseline dataCross-over designs 
an be used in experiments that also in
lude between-subje
t treatments(e.g., 
omparing the e�e
t of female presen
e/absen
e in a 
ross-over trial, in whi
h di�erentindividuals have been assigned to di�erent hormonal manipulation treatments). In
lusion ofthese between-subje
t fa
tors in the analyses is reviewed in DU-2.The use of baseline data (data 
olle
ted before treatment(s) is(are) applied) 
an be found inJK and SN (see also Tsai & Patel (1996) for non-parametri
 analysis of a 2x2 design). Baselinedata 
an in
rease the sensitivity of tests for treatment*period intera
tions and between-subje
ttreatments; however, baseline data do not in
rease sensitivity of tests of dire
t treatment e�e
ts,and thus are unlikely to be useful in most behavioural studies.
4.7 Con
lusionsCross-over designs 
an result in an in
rease in power and redu
e the number of animals neededin a study, whi
h is parti
ularly important if there are ethi
al 
on
erns or we are working withsmall and/or threatened populations. However, the analysis of 
ross-over trials tends to be more
ompli
ated than the analysis of parallel trials, and the potential for aliasing of e�e
ts in 
ross-over designs is larger; in addition, 
ross-over trials require that subje
ts be used repeatedly.Thus, ele
tion of 
ross-over designs vs. parallel trials will have to 
onsider how 
ostly it isto obtain new subje
ts vs. how 
ostly it is to obtain repeated measures of the same subje
t.Additional (but rarely available) information on within- vs. among-individual varian
e wouldallow more informed 
hoi
es between 
ross-over and parallel group designs (see details in SN,
h. 9).



104In many studies 
ondu
ted in the lab or in �eld en
losures that require lengthy trainingor habituation of animals, 
ross-over trials are probably good 
hoi
es (if not the only option).In some �eld studies relo
ating subje
ts might be too time 
onsuming 
ompared to �ndingnew subje
ts, whereas other �eld studies use individually-marked animals that 
an be relo
atedeasily. However, even when subje
ts are easy to relo
ate, 
ross-over designs might be di�
ultto use in �eld 
onditions: the assignment of subje
ts to sequen
es will have been done beforethe animals are a
tually found on a parti
ular day, and for period to have the same meaninga
ross subje
ts, the time interval between periods should be 
omparable among animals. These
onditions might impose too many 
onstraints on whi
h parti
ular animals need to be foundon a parti
ular day, and 
ould make 
ross-over designs less attra
tive.The type of response will also a�e
t the design of 
hoi
e (see DU-2: next 
hapter). Thus,during the design stages (i.e., before any data have been gathered) it is very important tode
ide upon and understand the types of analyses that will be used; this might show that
ertain analyses are not possible and 
ould prompt a 
hange in the design. It is too risky toassume that any design and type of data 
an be analysed statisti
ally.In summary, this paper has argued that: a) a large number of designs is available forbehavioural studies; designs 
omposed of dual sequen
es are usually preferable, and even whendealing with two treatments we might not want to limit ourselves to the 2x2 design (see Table4.4, p. 100); b) we will (virtually) always have to in
lude period in our statisti
al analyses; 
)we need to think about 
arry-over e�e
ts and what 
onstitutes an appropriate wash-out period;how we are dealing with period and 
arry-over e�e
ts should be made expli
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107Chapter 5
Cross-over trials in animal behaviour.II: Analysis and plotting
5.1 Abstra
tCross-over trials are frequently used in animal behaviour experiments but are often analysedin
orre
tly (see previous 
hapter). In this paper I review methods of analysis of 
ross-overtrials in the 
ontext of animal behaviour experiments. I group methods of analysis a

ordingto the type of response variable: non-parametri
 and robust methods for metri
 responses,parametri
 methods for metri
 responses �linear mixed-e�e
ts models�, models for 
ategori-
al responses both non-parametri
 and parametri
 �extensions of generalized linear models�,
ensored observations �survival analysis�, and multivariate responses. Within-individual 
on-trasts are explained in detail early on, as they are the basis of many di�erent methods, fromnon-parametri
 to multivariate and survival-based models, and they o�er a useful framework forextending the analysis of data from 
ross-over trials to situations where robust methods mightbe needed (e.g., permutation tests of 
ensored multivariate responses). In this 
hapter I alsodis
uss some types of plot that are spe
i�
 and parti
ularly useful for 
ross-over trials. Before
ondu
ting a study, it is of paramount importan
e to 
onsider both the design and analysis,sin
e the type of response 
an a�e
t the 
hoi
e of design. Moreover, some types of responses
an be very di�
ult to analyse, spe
ially with small sample sizes, and 
an result in very lowstatisti
al power (in parti
ular 
ategori
al and survival data), and might prompt us to redesign



108the experiment or 
onsider measuring other responses.5.2 Introdu
tionCross-over trials are frequently used in animal behaviour (see Díaz-Uriarte, in review �previous
hapter; hereafter DU-1) as they allow us to 
ondu
t experiments with relatively small numbersof subje
ts that nonetheless a
hieve high statisti
al power by using ea
h subje
t as its own
ontrol (Jones & Kenward, 1989 �hereafter JK; Senn, 1993a �hereafter SN). Thus, 
ross-over designs are powerful tools when repeated testing of one subje
t is mu
h simpler thanre
ruitment of new subje
ts. However, 
ross-over experiments in animal behaviour studiesare usually analysed in
orre
tly, as if they were mat
hed pairs or "typi
al� repeated-measuresdesigns, whi
h they are not (see DU-1 for details and examples). The main problems arefailure to a

ount for period and 
arry-over e�e
ts. The widespread used of inappropriateanalyses 
ould be the result of a la
k of information about 
ross-over trials in statisti
al texts
ommonly used by behaviourists. The problem is 
ompounded be
ause in many behaviouralexperiments resear
hers often re
ord data (su
h as 
ategori
al data or 
ensored time to eventdata) that might not allow the use of standard parametri
 analyses, and frequently measureseveral response variables that ought to be analysed with multivariate te
hniques.The main obje
tive of this paper is to review the analysis of 
ross-over designs in the
ontext of animal behaviour experiments. This paper should be of immediate and pra
ti
al usefor behaviourists and statisti
al 
onsultants working with behaviourists. I review and show the
onne
tions among di�erent methods that have re
ently appeared in the statisti
al literatureand are relevant to behaviourists (e.g., multivariate responses and time to event data), butthat are not 
overed in available texts (JK; SN; Ratkowsky et al, 1993). On other topi
s (e.g.,linear mixed-e�e
ts models) I provide pra
ti
al dis
ussion in the 
ontext of 
ross-over trials.Nonparametri
 and 
ategori
al data methods are 
onsidered in re
ent reviews of 
ross-overtrials; I have in
luded some new papers and eased the use of these methods by 
ross-referen
ing



109statisti
s textbooks and software pa
kages. Small sample sizes, blo
king, and among-subje
ttreatments are all relevant to animal behaviour experiments and are 
onsidered throughoutthe paper. I 
on
entrate on methods that are available in major statisti
al pa
kages (spe
iallySAS, S-Plus, and R; note that R is free GNU software that 
an be obtained from CRANat http://
ran.r-proje
t.org and mirror sites; unless spe
i�ed otherwise, S-Plus libraries areavailable from Statlib at http://lib.stat.
mu.edu and R libraries from CRAN), or that 
an beimplemented with a minimum amount of 
ode writing. Finally, I emphasise randomization andpermutation tests (e.g., Edgington, 1995; Good, 1994; Noreen, 1989). Randomization tests,in
reasingly used in behaviour and e
ologi
al resear
h (e.g., Manly, 1997; Crowley, 1992), area general alternative when parametri
 assumptions are not met, 
an be more powerful and�exible than traditional "non-parametri
" methods, and might be the most appropriate testsfor many experimental settings (Ludbrook & Dudley, 1998).I review the analysis of data from 
ross-over designs a

ording to the type of responsevariable (e.g., Agresti, 1990, 
h. 1). A metri
 or interval response is one that has numeri
aldistan
es between any two levels of the s
ale (e.g., length); arithmeti
 operations on the responseare meaningful. One spe
ial type of metri
 responses is time to an event (examined later).Ordinal variables are 
ategori
al variables that have ordered levels (e.g., bad, fair, good), butdi�eren
es, sums, and other algebrai
 operations on the ranks or levels are not meaningful.Nominal 
ategori
al variables have levels without natural orderings (e.g., Buddhist, Christian,Hindu). A parti
ular type of 
ategori
al responses are binary out
omes (su
h as su

ess/failure).I �rst review the analysis of data from 
ross-over experiments. Next I 
over plotting andgraphi
al summaries in 
ross-over experiments. Then I dis
uss sample size and missing data.I 
on
lude with some re
ommendations on the use and analysis of 
ross-over experiments inanimal behaviour experiments. Elsewhere (DU-1 �previous 
hapter) I have reviewed somebasi
 terminology and the design of 
ross-over trials.



1105.3 Metri
 responses: nonparametri
 and robust methods5.3.1 Within-individual 
ontrastsWith two treatments and dual designs, a 
ommon way to 
arry out robust analyses (JK, p. 60-65; 160; Hafner et al., 1988) is to use within-individual linear 
ontrasts to redu
e the data fromea
h individual to a single number and then 
ompare these numbers between sequen
es. Theuse of within-individual 
ontrasts is the basis of many analyses of 
ross-over trials (in
ludingsome multivariate analyses), and thus will be explained in detail.The within-individual 
ontrasts are linear fun
tions of the observations of ea
h subje
t; the
ontrasts' 
oe�
ients are the same for all sequen
es, and the sum of the 
ontrasts' 
oe�
ientsadds to zero. The estimator of the e�e
t of interest is the di�eren
e between (the mean of the)within-individual 
ontrasts of the two sequen
es. For example, in the 2x2 design the 
ontrastfor treatment e�e
ts is the di�eren
e between the measures in the �rst and se
ond periods; weobtain the estimator of treatment e�e
ts as the di�eren
e between the mean 
ontrasts fromsequen
es 1 and 2 (see JK �pp. 23-28� and SN �pp. 42-44; also DU-1).Contrasts are 
hosen so that they isolate the e�e
ts we are interested in (e.g., treatmente�e
ts). In the 2x2 design the Hills-Armitage analysis (explained in DU-1) is an example of thewithin-individual 
ontrasts logi
. In more 
ompli
ated designs, there 
an be several possiblelinear 
ontrasts for a parti
ular e�e
t, but the estimators with the smallest varian
e are theOrdinary Least Squares (OLS) estimators (Hafner et al., 1988). The design matrix X (withone row per 
ell mean) used to obtain the OLS estimators in
ludes subje
t, treatment, andperiod e�e
ts and, if appropriate, 
arry-over e�e
ts (see Ratkowsky et al., 1993, for exampleswith 
ross-over designs). SN (p. 238-248) shows how to obtain the estimators without usingmatri
es. Although these OLS estimators are, stri
tly, only optimal for uniform 
ovarian
estru
tures, with other 
ovarian
e stru
tures the estimators are less e�
ient but are still unbiased(see JK) and will not result in in
reased Type I error rates. These estimators will all take the



111form of a di�eren
e between groups of 
ontrasts among the periods and all the valid 
ontrastsmust have the same form in the two sequen
es.On
e we obtain the 
ontrasts, we 
ompare them between the two sequen
es. As a teststatisti
 we 
an use the di�eren
e between the two sequen
es of the mean (within sequen
e) ofthe within-individual 
ontrasts. The p-value for this test 
an be obtained from a randomizationtest (e.g., Edgington, 1995), an independent t-test, or a Wil
oxon rank sum (=Mann-Whitney)test (e.g., JK, p. 51-60; SN, p. 93); Tudor & Ko
h (1994; hereafter TK) use the quadrati
statisti
 given by their eq. 2.8 instead of a t-test. If using a Wil
oxon rank sum test, theranking is done after the linear 
ontrasts are applied (i.e., we do not rank the original data).Covariates (if their value remains the same over all periods of an individual) and other fa
tors
an also be examined by using as a response variable the within-individual 
ontrasts (insteadof the original values themselves) in a linear model that in
ludes the 
ovariates (e.g., Hafner etal., 1988). If using randomization tests, the restri
tions in the allo
ation of subje
ts (e.g., samenumber of subje
ts to ea
h sequen
e) should be taken into a

ount.In some designs (e.g., ABBA,BAAB), the varian
e of the estimator of treatment e�e
tsis smaller when no 
arry-over e�e
ts are in
luded in the model. We 
an start with an OLSestimator from a design matrix that in
ludes 
arry-over e�e
ts, and if the test of 
arry-overe�e
ts 
learly indi
ates that these e�e
ts are unlikely, we 
ould obtain a new OLS estimatorof treatment e�e
ts from a design matrix that in
ludes no 
arry-over e�e
t (e.g., Hafner et al.,1988).An analysis based on within-individual 
ontrasts is robust in the sense that it makes noassumptions about the 
ovarian
e stru
ture (JK, p. 65, 160, 283; Hafner et al., 1988), althoughthe analysis does assume that the responses of di�erent animals are independent. However, inparti
ular in designs with many periods, power is lost with respe
t to, say, a linear mixed-e�e
tsmodel when assumptions of the mixed-model are met.The use of 
ontrasts 
an be understood in a randomization test 
ontext. Under the null



112hypothesis of no treatment e�e
ts, an individual that was assigned to sequen
e AB would haveyielded the same pair of values if it had been assigned to sequen
e BA, be
ause individuals areassigned randomly to sequen
es. Thus, the di�eren
e between periods 1 and 2 should be thesame regardless of sequen
e assignment (note that possible period e�e
ts are thus taken intoa

ount). Contrasts must be the same regardless of sequen
e: under the null hypothesis, a linear
ombination of an individual's responses must remain un
hanged �i.e., the estimate must beinvariant under permutations of the observations. For most designs we 
annot test for periode�e
ts using a randomization test: as periods are not randomized, the order of observationsmust remain the same in all possible random assignments of subje
ts to sequen
es (Shen &Quade, 1983). In fa
t, the OLS estimator for period will di�er depending on the sequen
e, andwe 
annot devise a randomization test to examine period e�e
ts.Transformations of data 
an a�e
t the results of nonparametri
 and randomization methods.Before 
ondu
ting any analyses, we should 
onsider the appropriate s
ale for the data; e.g., ifthe e�e
t of treatment will be to in
rease the response in one treatment by a multiple of theresponse under the other treatment (i.e., a multipli
ative e�e
t) then we will probably want tolog-transform the data before any tests. Noti
e, however, that interpretation of results fromparametri
 and non-parametri
 tests 
an di�er (e.g., Conover, 1980; Johnson, 1995; Stewart-Oaten, 1995; Seaman & Jaeger, 1990).5.3.2 Blo
king, among-subje
t treatments, and more than two sequen
esWhen experiments are 
arried out in blo
ks (e.g., weeks, age groups, or lo
ations), analyses thatuse randomization tests 
an be applied as before, but the randomization tests must preservethe restri
ted randomization used in the experiment (e.g., Edgington, 1995; p. 131; Noreen,1989, p. 28; Maritz, 1995, p. 191). The test statisti
 is 
omputed from all data together forea
h permutation, but the random reallo
ation is restri
ted to within-blo
ks. Designs thatinvolve both among and within-individual level treatments 
an be analysed with the approa
h



113above, although 
are is required in the sele
tion of the test statisti
 and the spe
i�
ation ofthe underlying model (e.g., intera
tions between the among and within-individual treatmentsshould generally be 
onsidered). An alternative is to use the extended Mantel-Haenszel test(e.g., Agresti, 1990, p. 283, Ko
h & Edwards, 1988, p. 418; for 
ross-over TK, p. 358 and 375;there are several tests whi
h 
ontain the words "Mantel-Haenszel"; the test referred to here isappli
able to ordinal response variables). With small sample sizes, this statisti
's approximate
hi-square distribution (1 d.f.) is not appropriate, and the p-value should be determined witha randomization test.Designs made by pairs of dual sequen
es 
an be analysed like a blo
ked design, but nowea
h sub-design will have its 
orresponding OLS estimator. The analyses using t-tests involveobtaining a 
ombined estimator of the treatment di�eren
e and its varian
e, and are shown inJK (p. 171 and �.). Alternatively, with randomization tests, the testing pro
edure would beanalogous to a blo
ked design, where ea
h sub-design 
onstitutes a blo
k (e.g., TK, p. 376);however, in 
ontrast to the blo
ked design, here the test statisti
 is 
omputed separately forea
h of the designs, and later 
ombined (after weighting by sample size of ea
h sub-design). Forthe AA,BB,AB,BA design see Elswi
k & Utho� (1989; also TK, p. 374).5.3.3 More than two treatmentsNon-parametri
 tests of designs for three or more treatments are more 
ompli
ated. SN (p.144-152) presents a test that 
an be applied to designs with the appropriate stru
ture (e.g.,previous 
hapter, Table 4.5b, p. 101); the pro
edure is analogous to the one used for designsmade of dual sequen
es (see paragraph above), where we test di�eren
es between pairs of treat-ments by arranging sequen
es in pairs where the two treatments appear in inter
hanged periods(analogous to dual designs). For ea
h pair, we obtain the statisti
 by forming the appropriatewithin-individual 
ontrasts. We then 
ombine the statisti
s over all pairs of sequen
es using aweighted sum. This is another example of the extended Mantel-Haenszel test, and 
an be anal-



114ysed as su
h (SN, p. 150; Ko
h & Edwards, 1988). Appli
ation of this test requires a parti
ular(and somewhat restri
tive) design; if we suspe
t we will use nonparametri
 methods, we shoulddesign the trial to 
onform to this stru
ture in advan
e.For designs that do not have this stru
ture, Pea
e & Ko
h (1993) present a more general test,whi
h is based on obtaining sequen
e di�eren
es of period 
ontrasts, so as to isolate the e�e
tsof interest (e.g., pairwise di�eren
es between treatments). This method requires relatively largesample sizes and that the di�erent sequen
es have the same number of subje
ts; allo
ation ofsubje
ts to sequen
es during the exe
ution of the experiment should be done by blo
ks (withnumber of subje
ts per blo
k an integer multiple of the number of sequen
es). A randomizationtest for a three-period, three-treatment trial is shown in Shen & Quade (1983); it 
an handlemissing data, but assumes un
orrelated errors.Tests for three-treatment, three-period designs that 
onsist of repli
ated sets of two Williamssquares are shown in Bellavan
e & Tardi� (1995). These tests are based on a non-parametri
 testof a randomized blo
k design (a pro
edure similar to, but more e�
ient than, Friedman's test);it assumes that 
orrelation of errors a
ross time does not 
hange, and it 
an not be extendedto more than three treatments. For the s-treatment, s-period (s≥3) Williams square design,Ohrvi
k (1998) presents tests for treatment e�e
ts (and pro
edures for multiple 
omparisons);these tests also assume that 
orrelation of errors a
ross time does not 
hange.5.4 Metri
 responses: linear mixed-e�e
ts modelsThe distinguishing features of 
ross-over designs (e.g., JK; Lindsey, 1993) are time-
hanging 
o-variates (the most obvious one being the within-individual treatment; other within-individual
ovariates might also 
hange over time) and potentially 
orrelated observations within individ-uals. Covariates 
an easily be 
onsidered in linear mixed-e�e
ts models, and these models 
analso be used to analyse 
omplex experimental designs. Traditionally, 
ross-overs (and other re-



115peated measures designs) were analysed with split-plot ANOVA. With more than two periods,however, the split-plot analysis makes restri
tive and potentially unrealisti
 assumptions aboutthe 
ovarian
e stru
ture (the so-
alled spheri
ity 
ondition that, for example, implies that dif-feren
es between responses in any two periods have the same varian
e). There are ways to dealwith these restri
tive assumptions (e.g., Diggle et al., 1994; Crowder & Hand, 1990), but it isgenerally more satisfa
tory to dire
tly model the 
ovarian
e stru
ture using linear mixed-e�e
tsmodels (see Pinheiro & Bates, 2000; Littell et al., 1996; also Verbeke & Molenberghs, 1997;Bennington & Thayne, 1994; Lindsey, 1993). Mixed models are ideally suited for 
ross-overexperiments as the latter in
lude both �xed e�e
ts (treatment, period, 
arry-over) and randome�e
ts (the subje
ts or animals). Moreover, software for linear mixed models allows �exiblemodelling of the 
ovarian
e stru
ture, deal mu
h better with unbalan
ed data than traditionalANOVA, and allow use of 
ovariates that 
hange both at the within and among-individual level.Additionally, mixed models 
an re
over information about treatment e�e
ts available betweensubje
ts (Littell et al., 1996), whi
h 
an be important in 
ross-over designs with unbalan
e(Brown & Kempton, 1994), either from missing data or by design �e.g., partially balan
eddesigns. Finally, linear mixed-models are natural for examining questions of repeatability andindividual di�eren
es (an important topi
 in animal behaviour �e.g., DeWitt et al., 1999; Ara-gaki & Me�ert, 1998; and referen
es therein), as they make it possible to test the relevan
e ofthe among-individual varian
e 
omponent.Linear mixed models 
an be �tted using, for example, S-Plus and R (library nlme), SAS(PROC MIXED), as well as BMDP, Genstat, and others. Examples with 
ross-over trials arepresented in Vonesh & Chin
hilli (1997, 
h. 4), Littell et al. (1996, pp. 392 & �.), Lindsey (1993;pp. 136 & �.). Aside from the modelling of 
ovarian
e stru
ture and varian
e heterogeneity,mixed models have many similarities with the usual linear models. An overview of the theoryof linear mixed models 
an be found in Pinheiro & Bates (2000) and Littell et al. (1996) (seealso Davidian & Giltinan, 1995, 
h. 3). General strategies for model building are dis
ussedin Pinheiro & Bates (2000) and Diggle et al. (1994; spe
ially 
h. 4 and 5) (see also Verbeke



116& Molenberghs, 1997); in the 
ontext of 
ross-over designs, see Vonesh & Chin
hilli (1997,
h. 4). Diagnosti
 plots of �tted models are 
overed in detail in Pinheiro & Bates (2000; seealso Verbeke & Molenberghs, 1997). Mixed models present some di�
ulties with sele
ting theappropriate degrees of freedom to use when testing �xed e�e
ts (Brown & Kempton, 1994 �butwith large F-values the di�eren
es in d.f. are in
onsequential), and 
an be questionable withsmall sample sizes (in parti
ular for the e�e
t on estimation of the 
ovarian
e matrix).Be
ause of the problems with 
arry-over e�e
ts, there has been disagreement about theappropriate parameterisation of the 2x2 design (e.g., see Ratkowsky et al., 1993, 
h. 3). Oneparameterisation, based on JK (p. 30) is
yijk = µ + λi + sij + other.random + πk + τd[i,k] + other.�xed + eijkwhere in the �xed e�e
ts part µ is the inter
ept, λ is the 
arry-over (whi
h in this parameterisa-tion is equivalent to a sequen
e e�e
t), π is the e�e
t of period k, τ is the dire
t treatment e�e
tof the treatment given in period k of sequen
e group i, s are independent and identi
ally dis-tributed (i.i.d.) N(0,σ2

s) are the random e�e
ts of individual j in sequen
e i, and e i.i.d. N(0,σ2)are the within individual errors. All random e�e
ts are independent of ea
h other. "Other.�xed"refers to other �xed e�e
ts (
ovariates like body weight or temperature), and "other.random"refers to other random e�e
ts (e.g., blo
ks). A problemati
 aspe
t of this parameterisation forthe 2x2 design is the in
lusion of the 
arry-over e�e
ts (see dis
ussion above).A parameterisation that 
an be extended to models with more than two periods is
yijk = µ + ξi + other.�xed + other.random + sij + πk + τd[i,k] + λd[i,k−1] + eijkwhere everything is as above, but we have added ξ as the e�e
t of sequen
e. e i.i.d. N(0,R) isthe random error asso
iated with the m-th period measurement of subje
t k from sequen
e i,where R is the within-individual 
ovarian
e matrix and is the same a
ross levels of i, j, k. All



117random e�e
ts are independent of ea
h other. Here we 
an in
lude both sequen
e and 
arryover e�e
ts. When there are more than two periods, the 
ovarian
e stru
ture should always bemodelled appropriately. I have in
luded in the later model a sequen
e e�e
t; this is not doneby JK or SN, but it appears in Vonesh & Chin
hilli (1997, 
h. 4; see also Lindsey, 1993, p.15 and 135). We will generally want to in
lude a term for sequen
e for three reasons. First,when �tting mixed models it is 
onvenient to start with a "saturated model" to estimate the
ovarian
e stru
ture (Diggle et al., 1994, 
h. 4). Se
ond, the sequen
e e�e
t, if signi�
ant, mightalert us to potential problems with the model; a signi�
ant sequen
e e�e
t might result frombad lu
k during the randomization of subje
ts to sequen
es, but it 
ould also be the result ofhigher order treatment*period and treatment*
arry-over intera
tions not in
luded in the model(see also Elswi
k & Utho�, 1989). Third, in some 
ases sequen
e e�e
ts might be what area�e
ted by among-subje
t treatments (i.e., we will �nd signi�
ant sequen
e by among-subje
ttreatment intera
tions).When modelling period e�e
ts it might be appropriate to initially model them as a 
ategor-i
al variable (as the e�e
t of period might plateau), but it might be possible to obtain a simplermodel by using polynomial 
ontrasts and sequentially eliminating the higher-order terms, whi
h
ould result in a model with just a linear trend with time. Moreover, modelling period as a
ontinuous variable eliminates the 
onfounding of period with 
arry-over (Ratkowsky et al.,1993). Finally, although a typi
al strategy of model building is generally employed (JK, butsee SN), where non-signi�
ant terms are dropped from the model, the 
orre
t approa
h withnon-signi�
ant 
arry-over e�e
ts is debated (e.g., JK, p. 150).There are some di�eren
es in the literature on how to 
ode the 
arry-over term. For example,suppose that our design has treatments A, B, C; we will need a 
arry-over 
olumn in our datawith levels A, B, C, and 0 (Crowder & Hand, 1990, p. 107), as the �rst period has no previoustreatment (but this means that the �rst period and 
arry-over 0 are 
ompletely 
onfounded).This is the approa
h used by SN and Littell et al., 1996 (p. 392). However, in SAS we will



118not be able to obtain estimates (e.g., LSMEANS statement); thus, Littell et al. (1996) re
ode
arry-over, 
reating one dummy variable per treatment whi
h has a 1 if that treatment was inthe previous period, and 0 otherwise; this has no e�e
t on the p-values, but allows to obtainestimates. We 
an also use dummy variables for both period and 
arry-over that avoid over-parameterisations (see e.g., Diggle et al., 1994, p. 156). In the example of three-periods andthree-treatments, for period we use two dummies (say, x1 and x2), whi
h take value 0 on the�rst period, and for 
arry-over we use also two dummies (say, x3 and x4), whi
h take value 0for previous treatment A; note that we do not need to 
ode for the no-
arry-over of the �rstperiod, as this 
orresponds to x1=0 and x2=0. This third 
oding strategy should produ
esimilar results as the �rst two. The �rst two approa
hes do not work with nlme (S-Plus andR) if period is 
oded as a 
ategori
al variable, as we end up with a singular design matrix;however, the third will work in both SAS and S-Plus and R. Littell et al. (1991, p. 206) use adi�erent method, whi
h 
an yield di�erent results from the above one. Ratkowsky et al. (1993)propose making the �rst 
arry-over (0) equal to one of the other treatments; this, however, isnot re
ommended as results from mixed models depend on whi
h other treatment is pla
ed asthe 
arry-over in the �rst period.The d.f. that our analyses will yield should be examined during the design period, andalso serve as a 
he
k of the software output (but beware that Satterthwaite's approximationmight yield di�erent d.f. in unbalan
ed designs). Following JK (p. 141), for a design withs sequen
es and p periods we will have (sp-1) d.f. that 
an be divided in (s-1) d.f. betweengroups, (p-1) between periods, and (s-1)(p-1) for the group*period e�e
ts (more will be availableif period is modelled as a 
ontinuous variable). The latter (group*period d.f.) are the d.f. whi
hrelate to the e�e
ts of interest, spe
ially treatment e�e
ts, treatment*period intera
tions, and
arry-over e�e
ts. We 
an partition these d.f. in several di�erent ways, but we will always belimited by the total (s-1)(p-1) d.f. (or more if period is 
ontinuous). JK dis
uss how someterms (in parti
ular 
arry-over and treatment*period) might be aliased, whi
h 
an a�e
t theinterpretation of treatment e�e
ts (see also Ko
h et al., 1983). With among-subje
t treatments,



119some of the d.f. will be used to a

ount for intera
tions su
h as treatment*among-subje
ttreatment, period*among-subje
t, et
.5.5 Categori
al dataCategori
al data are among the most di�
ult to analyse in 
ross-over designs; at the same timethis is an area of very a
tive statisti
al resear
h. I start dis
ussing several nonparametri
-likemethods, �rst for binary responses and next for ordinal out
omes. Later I review methods thatare expli
itly model-based.5.5.1 �Nonparametri
-like methods�For the 2x2 trial with binary response, there are two main tests for treatment e�e
ts (see JK, p.89-105; SN, p. 106-109; Crowder & Hand, 1990, p. 109-110; Fidler, 1984), and (as usual) thesetests are appropriate for treatment e�e
ts in the absen
e of di�erential 
arry-over e�e
ts. Bothtests are based on 
omparing s
ores for individuals in the two periods; ea
h subje
t yields a pairof responses, 
d, whi
h means response 
 in period 1 and response d in period 2; thus, we 
anhave pairs 00, 11, 01, 10 (the last two out
omes are referred to as showing a preferen
e). TheMainland-Gart test uses only information form the 10 and 01 out
omes, 
omparing the numberof ea
h of these out
omes between the two sequen
es using, for example, Fisher's exa
t test.Pres
ott's test is equivalent to s
oring pro�le 01 as -1, pro�le 10 as +1, and pro�les 00 and 11as 0, and 
omparing the mean pro�le between the two sequen
es using a randomization t-test(whi
h is equivalent to using an exa
t 
onditional test for linear trend on the 2 x 3 
ontingen
ytable �this is di�erent from an exa
t test for independen
e). If the software pa
kage reportsone-sided p-values for exa
t 
onditional tests for 
ontingen
y tables we will want to doublethat p-value. The Mainland-Gart test does not depend on the random allo
ation of subje
tsto sequen
es, whereas Pres
ott's test does, but in virtually all behavioural e
ology experiments



120subje
ts will have been allo
ated to sequen
es randomly. Moreover, Pres
ott's test is generallymore sensitive than the Mainland-Gart test. Thus, Pres
ott's test is likely to be the more usefulof the two. However, tests of binary response data in 2x2 trials tend not be very powerful (i.e.,they are not very sensitive to treatment di�eren
es), and this 
an be aggravated if only a fewsubje
ts in ea
h sequen
e show a preferen
e (i.e., are either 01 or 10). Be
ker & Balagtas(1993) present a test that 
an 
an be slightly more powerful than Pres
ott's test, but is alsomore 
ompli
ated.For binary responses and designs with three or more treatments and a parti
ular stru
ture(e.g., Table 4.5 b, p. 101), SN (p. 153-155) proposes a method analogous to the one des
ribedabove for non-parametri
 analyses of metri
 responses with more than two treatments; thismethod 
an be applied with both Mainland-Gart's and Pres
ott's tests.With ordered 
ategori
al data, Senn (SN, p. 109-113; for a detailed example see also Senn,1993 b, and dis
ussion by Ezzet & Whitehead, 1991, 1993) presents a simple method based ona heuristi
 argument for the 2x2 design. For ea
h subje
t, we redu
e the data from the twoperiods to another ordered 
ategori
al response (e.g., if in period 1 an individual was in good
ondition whereas in period 2 it was in very good 
ondition, the value for this individual be
omes"improve"). We are left with ordinal data for ea
h sequen
e, and di�eren
es between the twosequen
e groups are an indi
ation of treatment e�e
ts. We 
an 
ompare the two sequen
egroups using, e.g., proportional odd models (Agresti, 1990, pp. 323-331). These methods mightbe questionable in trials with small sample sizes.Alternatively, for ordinal data, TK (pp. 359-361) present several tests based on Wil
oxon'srank sum statisti
; these tests involve di�eren
es between ranks within periods (in 
ontrast tothe other non-parametri
 tests where ranking was done over the whole sample). These statisti
sare easy to 
ompute; with small samples, the p-value 
an be obtained from the permutationdistribution. A more 
ompli
ated approa
h is presented in Brunner & Newmann (1987) whouse di�erent tests based on alternative s
hemes of ranking the observations.



121For 2-treatment, 2-sequen
es (and ≥2 periods) designs, Jung & Ko
h (1999) present adevelopment of methods dis
ussed in TK (p. 361-362) based on Mann-Whitney measures ofasso
iation. In ea
h period, these statisti
s estimate the probability of a larger response of arandomly sele
ted member from one of the groups relative to a randomly sele
ted member ofthe other group. This method allows strati�
ation and in
lusion of 
ovariates and only requiresmoderate sample sizes (≥ 10 individuals per sequen
e); the method is slightly 
ompli
ated toapply (although Jung & Ko
h, 1999, present three detailed examples of appli
ation), but isuseful for ordinal response variables and 
ontinuous asymmetri
 distributions (with possibleoutliers). Nonparametri
 methods for ordinal data with three or more treatments are not welldeveloped.5.5.2 Expli
itly model-based methodsThe methods in the previous se
tion are spe
i�
 for 
ertain types of responses and/or designs.However, it is possible to analyse 
ategori
al data (binary, nominal, and ordinal) for a potentiallyunlimited range of 
ross-over designs with methods based on expli
it models (see Kenward &Jones, 1994). These methods are based on generalized linear models (M
Cullagh & Nelder,1989; Agresti, 1990; Dobson, 1990; Crawley, 1993). Generalized linear models are extensionsof linear models that make it possible to analyse data in whi
h a fun
tion �
alled the linkfun
tion� of the mean response (but not the response itself) is linearly related to a set ofpredi
tors, and where the varian
e of the response might be a fun
tion of the mean response;generalized linear models have be
ome the standard way of analysing 
ategori
al data.With 
ategori
al data (and also with other data, su
h as survival; see below) we needto distinguish between di�erent types of models, the two most 
ommon being marginal orpopulation averaged, and subje
t-spe
i�
 or random-e�e
ts (see dis
ussion in Kenward & Jones,1994; Albert, 1999; Diggle et al., 1994, 
h. 7; Lindsey, 1993, 
h. 2; Liang et al., 1992; Zegeret al., 1988). Brie�y, marginal models model the marginal distribution of the response as



122a fun
tion of the explanatory variables; this modelling is done separately from the within-subje
t 
orrelation a
ross time (whi
h is treated as a nuisan
e) and the estimated 
oe�
ientshave a population interpretation (not an individual interpretation). In 
ontrast, in subje
t-spe
i�
 models a random e�e
t for an individual is introdu
ed (as was done in the linear mixedmodels), and the parameter estimates (say, for treatment e�e
ts) modify the probability of aspe
i�
 subje
t giving one response instead of another. The distin
tion between marginal andsubje
t-spe
i�
 models is not important for linear models be
ause we 
an formulate the twoapproa
hes so that the 
oe�
ients have the same interpretation; however, with 
ategori
al (andsurvival) data this is generally not the 
ase for most link fun
tions.Generalized estimating equations (GEE) are marginal models and 
an be implemented (seeHorton & Lipsitz, 1999) using SAS (PROC GENMOD) and S-Plus and R (library gee; forS-Plus also library yags at http://www.biostat.harvard.edu/�
arey); GEE's should performrelatively well in experiments with at least 20 subje
ts; estimators (e.g., of treatment e�e
ts)are 
onsistent even when the 
orrelation stru
ture is misspe
i�ed, and testing is done using arobust estimator of varian
e; Albert (1999) and Horton & Lipsitz (1999) present useful tutorialson GEE's. However, J. K. Lindsey, has pointed out �pers. 
omm.� that GEE's are notappropriate for 
ross-over designs, be
ause GEE's treat dependen
e among observations as iftreatments were between subje
ts, instead of within subje
ts; thus, the 
orre
ted standard errorsfrom GEE's are in�ated instead of redu
ed �the opposite of what one wants�, and thereforeresult in lower statisti
al power. Generalized linear mixed models are subje
t-spe
i�
 modelsin whi
h the random subje
t e�e
ts are assumed to follow some distribution; these models 
anbe �tted with SAS (PROC NLMIXED and ma
ro GLIMMIX �Littell et al., 1996), and R(library repeated, from J. Lindsey, available at http://www.lu
.a
.be/�jlindsey/r
ode.html; seealso Lindsey's libraries gnlmm for generalized non-linear mixed models and library growth) butmight not perform adequately with small sample sizes. Conditional likelihood models are alsosubje
t-spe
i�
 models (but here the subje
t e�e
ts are eliminated), and they 
an be �ttedusing software for log-linear models, su
h as SAS's PROC CATMOD (see Kenward & Jones,



1231991, for examples), and for some 
onditional models distribution-free and exa
t permutationtests are available (Agresti, 1993; Kenward & Jones, 1994). Dis
ussion and referen
es of GEE'sand generalized linear mixed e�e
ts models 
an be found in Albert (1999), Horton & Lipsitz(1999), Littell et al. (1996, 
h. 11), Vonesh & Chin
hilli (1997, 
h. 8), Diggle et al. (1994, 
h.7-9), Kenward & Jones (1994), Lindsey (1993, 
h. 2), Lipsitz et al. (1994), and SAS's on linemanual (whi
h in
ludes a 
ross-over example). Re
ent examples of appli
ations to 
ross-overtrials are shown in Diggle et al. (1994; GEE's in pp. 154-159; 
onditional likelihood in pp.175-181), Kenward & Jones (1994) and Lindsey (1993, pp. 201-204).5.6 Time to event data: 
ensored observationsMany studies in animal behaviour 
olle
t time to event data (also 
alled failure time data orsurvival data) su
h as time until a 
ertain behaviour is displayed (e.g., time to reemerge from arefuge following a predator's atta
k). Generally, animals are observed for a predetermined time,and the observer re
ords when the event takes pla
e. If the event takes pla
e in every period forevery subje
t, these are metri
 data (and 
an be analysed with either parametri
 or nonpara-metri
 methods). However, for some subje
ts the event might not o

ur within the observationperiod, whi
h results in 
ensoring (i.e., all we know is that the time till the event o

urs islarger than the observation time). Although a small number of 
ensored observations proba-bly does not pre
lude the use of the parametri
 and nonparametri
 methods above, 
ensoredobservations make usual te
hniques for metri
 data, in
luding non-parametri
 ones (see Fran
eet al., 1991; Du
roq, 1997), inappropriate. Censoring 
an violate several of the assumptionsof both parametri
 and non-parametri
 tests and will result in tests insensitive to treatmente�e
ts and biased estimates of treatment e�e
ts. In parti
ular, 
onverting survival data into0/1 data (for no-event and event respe
tively) is not only arbitrary (the 
oding depends onthe time at whi
h the 
ategorisation is made) but is also a very ine�
ient use of information.Moreover, 0/1 s
ores do not really fa
ilitate the analysis with 
ross-over designs.



124Censoring 
an be of several types (for details see, e.g., Klein & Moes
hberger, 1997; Lee,1992). The most 
ommon in behavioural studies is Type I 
ensoring, where the event is observedonly if it o

urs before some predetermined time. This 
ensoring time is usually 
ommon for allindividuals; with random 
ensoring �
ensoring time a random variable� data 
an be analysedwith methods for Type I 
ensoring, provided that 
ensoring and survival times are independent(O'Brien & Fleming, 1987; Heimann & Neuhaus, 1998).Analysis of 
ensored data, generally referred to as survival analysis or reliability analysis,is well developed (e.g., Klein & Moes
hberger, 1997; Collett, 1994; Lee, 1992; Lawless, 1982;Kalb�eis
h & Prenti
e, 1980), but te
hniques appli
able to experiments where the same indi-vidual experien
es the event repeatedly are not 
ommon. Some methods have been proposedto analyse paired 
ensored data (e.g., Woolson & O'Gorman, 1992; O'Brien & Fleming, 1987),but these methods 
annot be applied to 
ross-over designs if there are period e�e
ts.Two re
ent te
hniques available to analyse repeated time to event derive from the analysisof multivariate time to event data, but might not be appropriate with small sample sizes. Themethod developed by Lee et al. (1992; see also Lin, 1994, 1993; Wei et al., 1989) assumes amarginal proportional hazards model; it does not require that we spe
ify the form of the jointdistribution of the observations of ea
h subje
t. Frailty models (e.g., Klein & Moes
hberger,1997, 
h. 13; Du
ro
q, 1997; Therneau & Grambs
h, 2000) are subje
t-spe
i�
 models in whi
hall the observations from a subje
t share a 
ommon frailty (a 
ommon random e�e
t that a�e
tsthe hazard rates of all the observations of a subje
t); frailty models require that we assumea parti
ular distribution for the frailty (generally a gamma). Both the marginal and frailtymodels are available in S-Plus and R (library survival5) and in SAS (PROC PHREG �Allison,1995, pp. 236-247).Lindsey et al. (1996) present a method spe
i�
 for 
ross-over designs based on log-linearmodels, whi
h has the advantage that it works with relatively small sample sizes and 
an be�tted with software that handles generalized linear models su
h as S-Plus, R, SAS, GLIM. The



125R library event (available at http://www.lu
.a
.be/�jlindsey/r
ode.html; the syntax for modelbuilding with this library is somewhat di�erent from other R statisti
al models) will �t these(see fun
tion ehr) and other models for repeated 
ensored data. Segal & Neuhaus (1993) presenta related marginal method that 
ombines Poisson regression with GEE and 
an be implementedwith SAS, S-Plus, or R. Two advantages of all these four methods are: a) they 
an a

ommodate
ovariates and fa
torial designs that mix within- and among-subje
t treatments �although notne
essarily nested designs; b) they 
an be used to analyse experiments where we have measuredmore than one response variable. Many modelling strategies for these methods are 
ommonwith linear models (see above).Feingold and Gillespie (1996) suggested two nonparametri
-like approa
hes for two-treatmentdesigns. Their se
ond method is tailored to the 2x2 design but is di�
ult to extend to other de-signs. Their �rst method has wider generality; one �rst ranks (see below) all the observations,and then applies the pro
edures for 
omplete data to these ranks (i.e., one applies within-individual 
ontrasts to the ranks, and later 
ompares the within-subje
t 
ontrasts between thesequen
es; note that with Ko
h's (1972) method, however, one �rst 
omputes within-individual
ontrasts and then ranks them). There are several ways of ranking the observations in the
ontext of survival analysis; Feingold & Gillespie (1996) employ Gehan's (1965a & b) s
ores;log-rank s
ores (see explanation in, e.g., Lawless, 1982, p. 420; Lee, 1992, p.109-112) might bepreferable (Prenti
e & Marek, 1979; O'Brien & Fleming, 1987; Kalb�eis
h & Prenti
e, 1980;Lee, 1992; Lawless, 1982). The p-value for this test 
ould be obtained with a t-test, a Mann-Whitney test, or a randomization test. This method is easy to apply, and it 
an be used withmultiple strata or trials 
omposed of dual designs, e.g., by using the extended Mantel-Haenszeltest with the log-ranked data (e.g., TK) or using randomization tests where randomizationis 
onstrained within strata. An example of the appli
ation of this method to a behaviouralexperiment is given in Díaz-Uriarte (1999). An alternative to Feingold & Gillespie's (1996)approa
h is to apply the methods in "Ordinal responses" to log-ranks of the data (see TK, p.365).



1265.7 Multivariate responses and repeated measures within peri-odsBehavioural e
ology experiments frequently 
olle
t more than one response variable (e.g., in ananti-predator experiment in ea
h period we might measure distan
e from the predator and timeto re-emerge from the refuge, so we would have measured q=2 di�erent response variables).This is somewhat similar to making repeated measurements (of the same response variable)within ea
h time period (e.g., in ea
h one of p periods, we might re
ord the preferred per
hheight at 5 min intervals during 1 h; thus we have q "sub-periods" �here q=12� or di�erentmeasurement o

asions within ea
h period). In both 
ases these are 
alled "doubly multivariate"or "multivariate repeated measures". Multiple univariate tests of ea
h one of the responsevariables (or at ea
h one of the repeated observation times) 
an result in inferential problemsas they ignore possible dependen
ies between observations (e.g., Krzanowski, 1990, p. 235 &�.; Johnson & Wi
hern, 1998). Sometimes there is a large in
rease in Type I error rate (i.e.,the true experiment-wise alpha level is larger than the nominal alpha level); other times fullymultivariate approa
hes 
an attain larger power by using the information from the 
orrelationamong variables. With multiple responses it is frequently advised (e.g., Johnson & Wi
hern,1998) that one should initially use a multivariate test and only if it reveals signi�
ant di�eren
esemploy univariate tests on ea
h response variable.For metri
 data, JK devote a 
hapter (
h. 6) to repeated observations of the same variable.First, we 
ould summarise the repeated data for ea
h individual into one or a few statisti
s,su
h as area under the 
urve, slope and inter
ept, et
.; this is the simplest approa
h. However,this approa
h is problemati
 when the data are in
omplete, and when 
ovariates take di�erentvalues during the observation session. Moreover, use of this approa
h requires obtaining as
ienti�
ally meaningful data summary, and thus assuming that all the information in the datathat is not re�e
ted by the summary statisti
(s) is s
ienti�
ally uninteresting (see also Crowder& Hand, 1990, 
h. 1; Diggle et al., 1994, 
h. 6 for dis
ussion).



127With two-sequen
es designs, a se
ond approa
h (see JK, 
h. 6) is to obtain individual
ontrasts (see above) for ea
h sub-period q; thus, we redu
e the data from a total of q*pto q derived measurements, and 
an analyse these q derived measurements with appropriaterepeated measures te
hniques (e.g., MANOVA). For instan
e, Patel & Hearne (1980; see alsoRodríguez-Carvajal & Freeman, 1999, p. 399) use a multivariate linear model and obtain, forea
h subje
t, a new transformed variable whi
h is a linear 
ombination of the original responsesover the q sub-periods, and then use a two-sample Student's t-test on the transformed variable.This pro
edure tests the hypothesis that the sum of treatment e�e
ts over all periods is the samefor the two sequen
es (and thus would not be appropriate with multiple responses �di�erentvariates).A third approa
h, more satisfa
tory and �exible (and a ne
essity with more 
ompli
ateddesigns) is to �t all the data in a single model (i.e., avoid redu
ing the data to q derivedmeasurements). We 
an use a split-plot in time repeated measures ANOVA where we havethree strata: between-subje
ts, within-subje
ts-among-periods, and within-period (i.e., the"sub-period" level). These analyses, like other split-plot-in-time repeated measures, make as-sumptions about the 
ovarian
e stru
ture whi
h might not be appropriate; moreover, they are
umbersome if the spa
ing between su

essive measurements is unequal or if there are missingdata. Thus we 
an also employ linear mixed e�e
ts models by spe
ifying the 
orrespondingrandom e�e
ts and 
ovarian
e stru
tures (see an example in Littell et al., 1996, pp. 388 and�.). In addition, Gale
ki (1994) dis
usses some 
ovarian
e stru
tures whi
h 
an be used withmixed models and allow �exibility for modelling the 
orrelation stru
tures for ea
h repeatedfa
tor. These stru
tures 
an be �tted using SAS's PROC MIXED; with the nlme library forS-Plus and R these stru
tures 
an be �tted by de�ning the appropriate 
orrelation stru
ture.With multiple response variables, appli
ation of Gale
ki's (1994) stru
tures might not beappropriate (as they require that the marginal 
ovarian
e stru
ture asso
iated with time bethe same for every response variable). Thus, mixed models with more 
omplex 
ovarian
e



128stru
tures (and a larger number of parameters) need to be �tted (e.g., Amemiya, 1994; Vonesh& Chin
hilli, 1997). These models 
ould be �tted, for instan
e, using a 
ompletely unstru
tured(positive-de�nite) varian
e-
ovarian
e matrix (but in this 
ase we would probably be estimatingtoo many parameters). Alternatively, in S-Plus or R it might be possible to de�ne spe
ial
ovarian
e stru
tures tailored to our spe
i�
 situation (e.g., unstru
tured ex
ept for blo
ksalong the diagonal with parti
ular stru
tures for the within-variate 
ovarian
e stru
ture).With 
ategori
al data, both GEE and generalized mixed models 
an a

ommodate multipleresponses, although the latter requires that we spe
ify the 
ovarian
e stru
ture. With time-to-event data, multiple responses 
an be easily analysed with the marginal approa
h of Lee et al(1992; we only need to obtain the quadrati
 form for the multivariate tests as in pp. 1066 and1070 in Wei et al., 1989; see also do
umentation of library survival5) and the log-linear modelsof Lindsey et al. (1996; see pp. 531 and �. for a worked example).For some 
ross-over designs with multivariate normal responses, some simple approa
heshave been worked out. Rodríguez-Carvajal & Freeman (1999) show how to 
arry out a multi-variate analysis in the 2x2 
ase using Hotelling's T2 (a 
ommon statisti
 for multivariate 
om-parisons of two groups; e.g., Morrison, 1990; Krzanowski, 1990). Grender & Johnson (1993; pp.71-74 and 84) had proposed a similar but more general approa
h that 
an be extended to somehigher-order designs, and it is appli
able to both repeated measures and multiple responses,and to multiple responses with repeated measures for ea
h response. The tests of Rodríguez-Carvajal & Freeman (1999) and Grender & Johnson (1993) for the multiple response situationis a simultaneous (multivariate) test of the hypothesis that the treatment e�e
t ve
tors arethe same in both sequen
es (whi
h is appropriate when variates are not measured in the sames
ale), and di�ers from the test of Patel & Hearne (1980) explained above.A di�erent approa
h is to use nonparametri
, rank-based, and randomization multivariatetests. Analogous to robust and nonparametri
 tests, the �rst step is to redu
e the p*q measure-ments of ea
h individual to a set of q variates by applying within-individual 
ontrasts separately



129to ea
h variate (see Nonparametri
 se
tion). We will refer to these as w-q. (With survival dataa possibility is to apply the methods of Feingold & Gillespie (1996) by obtaining the w-q fromthe log-ranks or Gehan's s
ores of the data �not the original, 
ensored, data; however, it isunknown how well this approa
h works). This �rst step of obtaining the w-q variates will be
ommon to all the remaining multivariate tests. The next step is to 
ompare, with the ap-propriate multivariate test, the w-q variates among sequen
es. Therefore, we 
an apply anymultivariate test provided that we 
an set the hypothesis test as a 
omparison among sequen
esof within-individual 
ontrasts. This will be possible (see JK, pp. 171 & �.; SN, pp. 144-152;�Metri
 responses: nonparametri
 and robust methods� se
tion) with two-treatment designs
omposed of pairs of dual sequen
es and with designs for more than two treatments that havethe spe
ial stru
ture in Table 4.5b, p. 101 in the previous 
hapter (but it might not be possibleotherwise; this emphasises again the need to 
onsider design and analysis before 
ondu
tingthe experiment). As was done before, we might want to start with within-individual 
ontraststhat in
lude 
arry-over e�e
ts, and later re
ompute the w-q from 
ontrasts without 
arry-overif multivariate and univariate tests show no eviden
e of 
arry-over e�e
ts in any variable.A very simple approa
h is to use the test in O'Brien (1984); �rst, ea
h w-q is rankedseparately; next, for ea
h individual we 
ompute Si as the sum of the ranks of all of the w-q.We test the null hypothesis of no overall di�eren
e between treatments by 
omparing the Si'sbetween sequen
es, using a two-sample t-test, a rank-sum test, or a randomization test. Thismethod 
an be extended to a

ommodate individual-level 
ovariates (by using, e.g., a linearmodel with Si as the response and sequen
e and 
ovariate as independent variables) and blo
king(see �Metri
 responses: nonparametri
 and robust methods�). This appli
ation of O'Brien's testis very similar to Patel & Hearne's (1980) method, ex
ept that we use a linear 
ombination ofthe ranks instead of the original variables (whi
h is what makes it possible to apply the test tovariables measured in di�erent s
ales). A drawba
k of O'Brien's test is that it is appropriateonly for some limited alternative hypotheses (see below).



130After ranking ea
h w-q separately, an alternative to O'Brien's (1984) test is to use themultivariate extension of the Kruskal-Wallis test (Puri & Sen, 1971, p. 184 & �.), whi
h isequivalent to applying a MANOVA on the separately ranked w-q variates (Zwi
k, 1985; notethat with only two groups a MANOVA is the same as Hotelling's T2). This is the test dis
ussedin Johnson & Grender (1993; however they 
ompute the test statisti
 using N*Pillai-Bartlett'stra
e, instead of (N-1)*Pillai-Bartlett's tra
e, as in Zwi
k, 1985; this is in
onsequential if arandomization test is used, but not if the 
hi-square approximation is used).A di�erent test is obtained by applying the pro
edures of Mielke and 
ollaborators (Mielkeet al., 1976, 1981 a & b) to the w-q variates (without ranking), as explained in Johnson &Mer
ante (1996). This method does not assume any parti
ular distribution for the data or ho-mos
edasti
ity. We 
ompute the average distan
e among the individuals of the two sequen
es inthe q-dimensional spa
e de�ned by the w-q variates, using an appropriate distan
e metri
 (e.g.,Eu
lidean distan
e �but distan
e metri
 
an a�e
t power; Díaz-Uriarte & Nordheim, in prep.).Under the null hypothesis, permuting individuals randomly between the two sequen
es shouldhave no e�e
t on the average within-sequen
e distan
e, but under the alternative hypothesispermuting individuals should in
rease the average within-sequen
e distan
e. (P-values 
an beobtained from randomization tests, or using an approximation; see Mielke et al., 1976, 1981b;Berry & Mielke, 1983). When di�erent response variables are measured in di�erent s
ales, wewill probably want to give equal weights to all variables; equal weights 
an be a
hieved by s
al-ing the data (e.g., to a mean of zero and varian
e of one) before 
omputing the within-subje
t
omparisons or by applying the test to the ranks of the w-q variates �where ea
h w-q is rankedseparately�; (see Johnson & Mer
ante, 1996). An example of the appli
ation of this methodto a behavioural study is given in Díaz-Uriarte (1999).The tests dis
ussed so far have been previously used with 
ross-over designs. Besides them,other randomization (e.g., Manly, 1997, 
h.12; Edgington, 1995, 
h. 8) and rank-based (e.g.,Puri & Sen, 1971, 1985; Thompson, 1991; Choi & Marden, 1997; Hettmansperger et al., 1998)



131multivariate tests 
ould potentially be applied, either to the w-q variates or their ranks (withranks 
omputed for ea
h variate separately or all together, depending on the test).In summary, we 
an apply a fully multivariate approa
h to the original responses; thisrequires modelling the varian
e-
ovarian
e matrix in linear mixed models but not ne
essarilywith GEE's or marginal survival models. When this is not feasible, multivariate and repeatedmeasures tests 
an be applied to the w-q variates/responses. The latter, although more robustthan, say, a fully multivariate linear mixed model, 
an also be 
onsiderably less powerful aswe lose degrees of freedom when we redu
e the data to w-q 
ontrasts The appropriate statisti
will depend on the null and alternative hypotheses and the stru
ture of the data (and shouldnot be de
ided based upon the results of the tests). For example, O'Brien's (1984) test is notdesigned to dete
t treatment e�e
ts that o

ur in only a few variates, or when the responsesin di�erent variates are not 
onsistent (e.g., if there are negative 
orrelations among variates).On the other hand, Hotelling's T2 is not the most powerful test against restri
ted alternatives.Moreover, among nonparametri
 and rank-based multivariate tests, performan
e 
an be stronglya�e
ted by the shape of the distributions. Finally, di�erent multivariate tests make di�erentassumptions (normality, homos
edasti
ity, symmetry of distributions, et
.). Dis
ussion 
an befound in Smith (1998), Choi & Marden (1997), Manly (1997, 
h. 12), Edgington (1995, 
h. 8),Westfall & Young (1993, 
h. 6), La
hin (1992), Bernstein et al. (1988), and O'Brien (1984).A di�erent approa
h is to adjust the p-values to 
ontrol for the in
rease in Type-I errorrate from multiple univariate tests (e.g., Wright, 1992 and referen
es therein; two arti
les inbiologi
al journals are Ri
e, 1989 and Chandler, 1995). These adjustments are better suited forsituations (su
h as data snooping) where we are testing many individual hypotheses and wantto 
ontrol overall Type I error rates (e.g., we want to examine in whi
h of �ve response variablesa treatment has some e�e
t), but are probably not the best approa
h when we 
ondu
t ourexperiment with the obje
tive of testing a parti
ular multivariate hypothesis (spe
i�ed beforethe experiment was 
ondu
ted); this approa
h is also useful when it is not possible to 
ombine



132the di�erent tests into a single multivariate test. Most of the most re
ent methods (e.g.,Ho
hberg's and Holm's sequential Bonferroni methods) provide mu
h higher power than thetraditional Bonferroni method (without in
reasing experiment-wise error rates), and some ofthem in
rease this power further by taking into a

ount possible 
ovariation among variables(e.g., Westfall & Young, 1993). For instan
e, the resampling-based methods in Westfall & Young(1993; see also SAS Institute, 1996, do
umentation for PROC MULTTEST) 
ould be appliedto the between sequen
e 
omparison of the w-q variates. Alternatively, we 
an employ theusual methods for 
ross-over trials with ea
h variable independently, and later make an overallstatement about the e�e
t of a treatment by using, for example, Holm's multiple 
omparisonsmethod.Even in the absen
e of rigorous statisti
al methods for dealing with multiple response vari-ables, some of the inferential problems arising from multiple responses 
an be minimised with
areful experimental design and analysis. For instan
e, what hypotheses will be tested, andwith what variables, 
an be spe
i�ed a priori; also, di�erent variables 
an be used to test dif-ferent (biologi
al) hypotheses, so that even if the data are not statisti
ally independent, theyat least refer to very di�erent biologi
al phenomena. This is not to suggest that other variablesshould not be examined for treatment e�e
ts, but just that testing of pre-spe
i�ed hypothesesshould be di�erentiated from hypotheses generation, for whi
h data snooping might be wellsuited (see also dis
ussion in Stewart-Oaten, 1995). Paraphrasing Ri
e (1989, p. 225), adjust-ment for multiple testing is ne
essary be
ause, otherwise, as authors we will be spending manypages dis
ussing spurious results, and as readers we will be wasting our time reading aboutrelationships that 
an be explained just by 
han
e.5.7.1 PCA in lieu of MANOVA?A potential mistake in the analysis of multiple responses is to try to use Prin
ipal Compo-nents Analysis (e.g., Morrison, 1990; Krzanowski, 1990; Bernstein et al., 1988) to redu
e the



133dimensionality of the response spa
e, and then analyse the prin
ipal 
omponents s
ores as ifthey were independent response variables. This pro
edure is inappropriate for two reasons.First, if we want to redu
e the dimensionality of the problem in the 
ontext of 
onsideringdi�eren
es between groups, we should use 
anoni
al variates, whi
h are di�erent from prin
ipal
omponents; 
anoni
al variates are 
losely related to MANOVA, 
anoni
al 
orrelation, and dis-
riminant analysis (see Krzanowski, 1990, p. 291-300 and 370-385; Bernstein et al., 1988, 
h. 10;Digby & Kempton, 1987, pp. 75-77). Se
ond, when using PCA we would be mixing within andamong-individual 
ovariation in the response variables. However, it should be possible to use
anoni
al variate analysis on the w-q variates (in
luding randomization-based 
anoni
al variateanalysis �Manly, 1997, p. 274).
5.8 Plotting in 
ross-over designsPlotting is a key tool in statisti
al analysis and 
an help us spot patterns and problems in theoriginal data and the �tted models. We 
an plot the original data, plot some linear fun
tionsof the data, or make plots that are spe
i�
 for the types of analyses 
arried out (parti
ularlyhelpful to examine violations of model assumptions, su
h as residual plots). I will brie�y reviewthe �rst two here.Initial plots of the data will help dete
t errors in the trans
ription or re
ording of data, andwill give an idea of the results that 
ould be expe
ted. JK (p. 20) refer to subje
t pro�le plotswhere, for ea
h sequen
e, the response of ea
h subje
t is plotted over the di�erent treatmentperiods, and the responses of ea
h subje
t are 
onne
ted with a line. These plots help identifyperiod and treatment e�e
ts, potential outliers, and variation within and among sequen
es. Fordesigns with more than two treatments, it is 
onvenient to add treatment labels in the x-axis.In treatment by treatment s
atter-plots (SN, p. 188), we plot ea
h patient's values usingea
h treatment response as a dimension.



134The response by patient s
atterplot (SN, p. 125 and 187) depi
ts the response variable(y-axis) by the sequen
e, using the same symbol a
ross sequen
es to identify treatments; allthe responses of a subje
t are shown in the same verti
al line (x-axis position). This plot
onveys a lot of information: variation within-subje
ts, variation among sequen
es, magnitudeof di�eren
es between treatments, and possible di�eren
es in treatment e�e
ts a
ross sequen
es(e.g., treatment*period intera
tion), as well as potential outliers (either a whole subje
t orobservations within an otherwise non-outlying subje
t). This plot and the subje
t pro�les plot
omplement ea
h other, as they 
onvey similar information in di�erent ways. In these plots,
ovariates or other fa
tors 
an be added by using symbols. Plots for time to event data arebased on the survival fun
tion and are shown in Feingold & Gillespie (1996). Non-metri
 dataare generally di�
ult to plot 
onveniently, and tables are probably more useful (but see SN, p.188-190).The se
ond type of plots are those that depi
t some fun
tion of the data, su
h as the linear
ontrasts. These plots are very useful at the initial and intermediate stages of formal analyses.For the 2x2 design, JK (p. 28-30) dis
uss a plot that helps understand the role of 
arry-over and treatment e�e
ts. In a s
atterplot, ea
h individual's sum over the two periodsis shown in the x-axis and ea
h individual's di�eren
e between the �rst and se
ond periodsin the y-axis; individuals from ea
h of the two sequen
es are plotted with di�erent symbols,and the outermost points of ea
h sequen
e are joined (i.e., we draw the 
onvex hull of ea
hsequen
e group). If there are only strong treatment e�e
ts, we will see two non-overlapping
urves that are separated in the verti
al dire
tion; if there are 
arry-over e�e
ts, the separationwill be along the horizontal axis. This plot also gives visual information on the variabilityin ea
h sequen
e (for parametri
 analyses, varian
e should be the same in ea
h group). Thegroups-by-period plot (JK, p. 20) shows the group by period means for ea
h sequen
e,
onne
ted by a segment. These are very similar to the usual intera
tion plots in linear models.Plotting the linear 
ontrast by a 
ovariate 
an be parti
ularly helpful to understand the role of
ontinuous 
ovariates. Miller (1999) has proposed two types of plots that help identify outliers



135and indi
ate whether representing di�eren
es between samples by a single statisti
 (su
h as themean) is appropriate; these plots allow us to examine subje
t by treatment intera
tions and
hanges in 
arry-over e�e
t over time.Summary plots of results should avoid two potential pitfalls. First, if analyses have beennonparametri
 it is misleading to use plots that represent a mean and its standard error, asthese have no relationship with the a
tual analyses 
ondu
ted (and 
ould suggest that the meanand s.e. are adequate 
hara
terisations of the data distribution, whi
h they are not). Se
ond, in
ross-over trials the estimator is based on within-individual di�eren
es, and the relevant sour
eof varian
e is the within-individual variability, not the among-individual variability. Thus, aplot of the overall mean of treatments A and B, ea
h with an standard error, would be oflittle use as the analyses were 
ondu
ted using within individual di�eren
es; moreover, thisplot 
an suggest no e�e
t even when there is a strong one. Instead, it is preferable to plotthe estimated treatment di�eren
e with its standard error (with no treatment di�eren
es, the
on�den
e interval should 
over 0). If we need to present the estimates of the a
tual responseswith with some measure of variability, it is best if those treatment means are adjusted treatmentmeans (as obtained from, e.g., linear models after 
orre
ting for e�e
ts of period and other �xede�e
ts), and if a 
autionary statement is added to the �gure legend indi
ating that those meansand s.e. 
annot be used to 
ondu
t a visual test of the hypothesis.5.9 Sample size and missing dataDis
ussion of sample size and power is provided in SN (211-219), Hills & Armitage (1979), andEzzet & Whitehead (1992). Sample size 
al
ulations 
an be extremely 
ompli
ated ex
ept forthe simplest designs, and when planning trials we would need information on varian
es, whi
his not always available before the trial starts.The 
onsequen
es of missing data 
an be parti
ularly serious for the 2x2 design; the simplest



136strategy is to use only subje
ts without missing data, but other strategies are possible (JK, p.76-80). For other designs, the 
onsequen
es of missing data are not ne
essarily that serious,and probably all the available data from every subje
t should be used (see SN, p. 219-221; seealso Low et al., 1999 for dis
ussion of robustness of 
ross-over designs to dropouts).It is important to understand what is the missing data me
hanism (e.g., Diggle et al., 1994,
h. 11; Albert, 1999). A 
ommon 
lassi�
ation is based on Littell & Rubin (1987). Dataare missing 
ompletely at random (MCAR) if the missing me
hanisms is independent of boththe observed and a
tual missing value; they are missing at random (MAR) when the missingme
hanism is independent of the a
tual missing value but depend on observed data (e.g., ifit depends on previously observed values); and they are missing non-randomly (= informativemissing me
hanism or non-ignorable missingness) when the missing me
hanisms depends on thevalues of the missed observations. For instan
e, suppose we are measuring �ght duration in anexperiment where ea
h subje
t is s
heduled to be observed �ve times per day, but o

asionallywe 
an not obtain 
omplete re
ords for ea
h individual. If there is a 
onstant probability thatwe 
annot �nd the subje
t for the s
heduled observation we have a MCAR me
hanism. If,however, long previous �ghts make it more unlikely that we will able to �nd the subje
t for thefollowing trial (e.g., following a long �ght an animal is more likely to move somewhere else),then we have a MAR me
hanism. We will have non-ignorable missingness if the probabilitythat we observe a short �ght is smaller than that of observing a long �ght (i.e., the probabilityof re
ording a �ght in
reases with �ght duration, the variable we are measuring).The statisti
al methods dis
ussed above 
an a

ommodate MCAR data; some of them(e.g., linear mixed models, but not GEE) also a

ommodate MAR data; but most methods willbe biased with informative missing values (e.g., experiments where the probability of havingmissing data depend on the treatment applied). Appli
ation of multivariate/repeated measureswithin periods te
hniques 
an be mu
h more 
ompli
ated in the presen
e of missing values orin
omplete observations (see, e.g., Davis, 1991; La
hin, 1992; Pales
h & La
hin, 1994).



1375.10 Con
lusions
Cross-over designs 
an be very useful in many behavioural experiments (see DU-1); however,their analyses are more 
ompli
ated than those of parallel trials. When planning a 
ross-overtrial we should 
onsider both the design and analysis, as the type of response variable 
an a�e
tthe 
hoi
e of design. Cross-over designs will be mu
h easier to analyse if we 
an keep the designsimple, minimising nesting and 
rossing of among-subje
t treatments (but if the setup doesin
lude these fa
tors, they should be in
orporated in the analyses).

Analysis of 
ategori
al data (spe
ially ordered responses) 
an be 
ompli
ated with 
ross-overdesigns, and generally requires at least moderate sample sizes (≥10 individuals per sequen
egroup); even with moderate sample size, power might be too low to dete
t small, but bio-logi
ally relevant, di�eren
es between treatments. Analysis of time to event data 
an also beunsatisfa
tory, but is easier if 
ensoring time is 
ommon for all individuals. More 
omplexdesigns, su
h as those that in
lude blo
ks and 
ovariates, 
an make analysis of 
ategori
al andtime to event data very 
ompli
ated. Modifying the experimental proto
ol might amelioratesome of these problems; for example, to avoid 
ensored data we might make observation pe-riods longer, and to eliminate 
ategories su
h as "low per
h", "medium height", "high per
h"we might be able to a
tually measure per
h height. In parti
ular, it is best to always obtaindata at as high a level as possible in the measurement hierar
hy (i.e., as 
lose to interval aspossible), and to remember that degrading data into 
ategories su
h as orderings or 0/1 willmake analyses more 
ompli
ated. Experiments with three or more treatments are inherentlymore 
ompli
ated to design and analyse, in parti
ular if nonparametri
 and robust methodswill be used. Experiments that measure multiple responses should use multivariate te
hniques.Finally, how 
arry-over and period e�e
ts are dealt with should be made expli
it.
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