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Abstract: Copy number alterations (CNA) in genomic DNA are linked to a variety of human diseases. Although many 

methods have been developed to analyze data from a single subject, disease-critical genes are more likely to be found in 

regions that are common or recurrent among diseased subjects. Unfortunately, finding recurrent CNA regions remains a 

challenge. We review existing methods for the identification of recurrent CNA regions. Methods differ in their working 

definition of “recurrent region”, the type of input data, the statistical and computational methods used to identify recur-

rence, and the biological considerations they incorporate (which play a role in the identification of “interesting” regions 

and in the details of null models used to assess statistical significance). Very few approaches use and/or return probabili-

ties, and code is not easily available for several methods. We emphasize that, when analyzing data from complex diseases 

with significant among-subject heterogeneity, methods should be able to identify CNAs that affect only a subset of sub-

jects. We suggest that finding recurrent CNAs would benefit from clearly specifying the types of pattern to be detected 

and the intended usage of the regions found (CNA association with disease, CNA effects on gene expression, clustering of 

subjects). We finish with suggestions for further methodological research. 
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1. INTRODUCTION 

 Copy number alterations (CNAs) are changes in the 
number of copies of DNA in specific regions of the genome, 
and can vary in size from 1 kb to a complete chromosome 
arm [1-4]. CNAs have been linked to many different types of 
disease, such as cancer, HIV acquisition and progression, 
autoimmune diseases, and Alzheimer and Parkinson’s dis-
ease [5-10]. Identification of CNAs uses mainly chip- or 
array-based technologies, such as aCGH arrays (including 
Agilent, NimbleGen, BAC, and cDNA arrays [11, 12]), and 
SNP-based arrays [13, 14], as well as sequencing-based ap-
proaches [15-18]. Many methods exist for analyzing a single 
array of CGH (e.g., see references in [19-23]) but location of 
CNAs in individual samples, however, is only the initial step 
in the search for disease-critical genes: the regions more 
likely to harbor disease-critical genes are those that are re-
current or common among diseased individuals or samples 
(e.g., [12, 24-26]). Recurrent CNAs regions are likely to con-
tain “driver” alterations (functionally important changes in 
terms of disease initiation or progression), whereas CNAs 
that are subject-specific would represent “passenger” altera-
tions (random somatic events without pathological rele-
vance) [3, 27]. Finding common or recurrent CNA regions, 
however, remains a challenge [2], both computationally and 
conceptually. In this review we discuss the available meth-
ods (many developed in the last few years), and some of the 
reasons why this task is a challenge. 
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 On Section 2 we start with a simple definition of what a 
recurrent CNA region is. We will then elaborate on this basic 
definition and will examine possible departures from it, as 
well as different objectives in terms of the exact patterns that 
researchers might be interested in detecting. In Section 3, we 
provide a brief overview of each of the existing methods. 
Then, we highlight common issues relevant to more than one 
method, and conclude with suggestions for further research.  

2. RECURRENT REGIONS: SCENARIOS 

 Intuitively, the idea of a “recurrent CNA region” seems 
straightforward. For instance, Rouveirol et al. [28] provide 
the following definition (p. 849): “We define a recurrent 
region as a sequence of altered probes common to a set of 
CGH profiles”. More generally, we can define a recurrent or 
common CNA region as a set of contiguous probes (a re-
gion) that, as a group, shows a high enough probability (or 
evidence) of being altered (e.g., gained) in at least some 
samples or arrays. Scenario I in Fig. (1) represents a simple 
case that fits the above definition: there is a recurrent CNA 
region that covers probes 1 and 2: probes 1 and 2 are altered 
(gained, in this case) in all five samples. Scenario I, how-
ever, is a very simplified scenario. We will discuss next sev-
eral additional scenarios, as well as departures from the 
above definition. 

 In Scenario II each of the regions affects only a fraction 
of the subjects (blue region: 40%; red region: 60%). The two 
regions of this scenario might be detected by many methods 
if tunable parameters are modified. For instance, some meth-
ods (e.g., MAR, CMAR; see Section 3.4) incorporate a fre-
quency parameter, making it straightforward to detect some 
of these cases. Other methods (e.g., KC-SMART [29]) in-
corporate a largest FDR or largest p-value parameter so in-
creasing this threshold would allow us to detect more regions 
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Fig. (1). Six possible scenarios of patterns of recurrent CNA regions. The dotted colored lines enclose a region. Data are shown as segmented 

data, where a “0” denotes no alteration, a “+” denotes gain, and a “-” denotes loss. 
 
(but might also increase the false positive rate beyond ac-
ceptable levels). Regardless of how this pattern is detected, it 
does represent a case of heterogeneity among subjects. 

 Scenario III is a hybrid of Scenarios I and II. Only 40% 
of the samples show a loss, but the regions of gain and loss 
share the same boundaries. This might not be a most plausi-
ble biological scenario, but it is necessary to recognize it as a 
distinct case. For instance, a method that averages over all 
probes might not detect any region here as gains and losses 
could cancel out. 

 Scenario IV represents a case that only a few methods 
can detect (but one that might be easily found by biclustering 

approaches —see Section 4.8): there are three regions, each 
of which affects only a subset of the individuals, and two of 
the regions overlap. Properly identifying the red and blue 
regions requires that we work with recurrent regions and not 
just sets of recurrent probes (see Section 4.1). pREC-S (see 
Section 3.13) specifically deals with these type of patterns. 
The three regions are also regions according to the methods 
in Rouveirol et al. (Section 3.4), but the blue region would 
not be reported as a minimal region (see Section 3.4). 

 In scenario V we want to detect a single region. Within 
the blue region, the pattern of alteration remains constant 
within sample over contiguous probes, even if some of the 
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samples show gains (Samples 1, 4, 5), some losses (Sample 
3), and some no alterations (Sample 2). The key to under-
standing the difference between Scenario V and Scenario III 
is to focus on the detection, in V, of one single region that 
includes all samples. Therefore, the blue region in Scenario 
V does not fulfill the definition of recurrent region above. 

 Only one method, CGHregions (see Section 3.1), has 
been specifically developed for Scenario V. This method 
uses another definition of “common”that refers to a contigu-
ous set of probes that, within sample, remains (almost) con-
stant (see also Section 3.1). To further understand Scenario 
V and what CGHregions attempts to capture (see also Sec-
tion 3.1), instead of focusing on the actual gains/losses, we 
can focus on the difference in the state of two successive 
probes. For each of the five samples, the differences are zero 
between P1 and P2 and between P2 and P3, but the differ-
ences are not zero between P3 and P4. Thus, the blue rectan-
gle delimits a region of homogeneous behavior between 
probes P1 and P3. 

 After seeing Scenario V, Scenario III can be considered 
another instance of the pattern shown in Scenario V, if we 
are not interested in differentiating between samples with 
amplifications and samples with deletions. In fact, for Sce-
nario III CGHregions will report a common region in probes 
P1 and P2, since there is no change, within-sample, in the 
state of the probes in those two locations. Most other meth-
ods, in contrast, will do two passes over the data: one for 
gains and one for losses, as they focus on the actual type of 
alteration. Thus, with most other methods we will obtain 
“recurrent CNA region with loss of DNA” (or “recurrent 
deletion”) for samples 1 and 2 and “recurrent CNA region 
with gain of DNA” (or “recurrent amplification”) for sam-
ples 3 to 5. This is why Scenario III might represent a prob-
lem for some methods: only 40% of the samples have a dele-
tion. 

 Scenario VI is an extension of Scenario V where we al-
low for the existence of subsets ofj subjects with different 
boundaries and regions. No existing method is designed to 
capture the patterns of Scenario VI. 

Table 1. Methods Available. log2 Ratios: Either log2 Ratios, as from Two Colour Arrays, or Equivalent Measures (such as log 

signal intensities and similar values returned from SNP arrays). Smoothed log2 Ratios: the Smoothed, Predicted or fitted 

log2 Ratio Returned by Some Segmentation Methods. Gains/Losses: Data Reduced to the Values 0, 1, -1, or Equivalent, 

Denoting no Alteration, Gain, Loss, or Genomic DNA.  We make no mention of multiple testing control issues: All 

methods incorporate some form of control, usually via FDR or bonferroni. 

Name  Input  
Output 

(Significance)  

Null Model  

(for Significance)  

CGHregions  Gains/Losses   None  None  

Master HMMs  log2 ratios  
Probabilities of alteration for each 

probe  
Homogeneous Hidden Markov Model  

cghMCR  Smoothed log2 ratios  None  None  

MAR / CMAR  Gains/Losses  None  None  

GEAR  log2 ratios  p-values  
Permutation of the alterations over the entire 

genome  

KC-SMART  log2 ratios  p-values  
Permutation  of the log-ratios over the entire 

genome  

STAC  Gains/Losses  Confidence for regions  Permutation of the regions within chromosomes  

MSA  log2 ratios  p-values  Permutation of the regions within chromosomes  

GISTIC  Gains/Losses  p-values  Permutation of the probes over the entire genome  

RAE  log2 ratios  p-values  
Permutation of copy number values using 

hotspots information  

Interval Scores  log2 ratios  Scores for each interval  Large deviation bound  for iid Gaussian data  

CoCoA  Gains/Losses  Scores for each interval  Binomial distribution on probes and intervals  

BSA log2 ratios Bayes Factors Bayesian hierarchical model 

pREC-A log2 ratios 
Probabilities of alteration for each 

region 
Non-Homogeneous Hidden Markov Model 

pREC-S log2 ratios 
Probabilities of alteration for each 

region 
Non-Homogeneous Hidden Markov Model 
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3. OVERVIEW AND DETAILS OF EXISTING 

METHODS 

 Some of the main features of existing methods are sum-
marized in Table 1 and 2 and in Fig. (2). In this section we 
review each method in turn, providing further details and 
pointing out potential problems and limitations. For practical 
reasons, we focus mainly on methods with available       

code. Issues common to several methods are discussed in 
Section 4. 

3.1. CGHregions [30] 

 As mentioned before (Section 2), this method is designed 
to capture patterns such as those in Scenario V of Fig. (1), 
and has therefore been considered a dimension reduction 
approach. The authors clearly state (p. 56, [30]) “Note that 

Table 2. Software Available 

Name  Availability 
Operating System and other 

Dependencies 
License  

CGHregions  
R/BioConductor package 

http://www.bioconductor.org 
R dependent GPL 2  

Master HMMs 
MATLAB toolbox 

http://www.cs.ubc.ca/~sshah/acgh/CNA-HMMer-v0.1.zip 
MATLAB dependent  GNU General Public License  

cghMCR  
R/BioConductor package 

http://www.bioconductor.org 
R dependent  GPL 2 

MAR, CMAR 
From the authors upon request 

Also part of VAMP and CAPweb programs (see text) 
  

GEAR  
Standalone application 

http://www.systemsbiology.co.kr/GEAR/ 
Windows  

Copyright stated in the setup 

program 

KC-SMART  

R/BioConductor package and  

standalone application based on Matlab Component Runtime 

http://www.bioconductor.org 

http://bioinformatics.nki.nl/~klijn/  

R or MATLAB dependent  
GPL 2 in the case of R pack-

age  

STAC  
Standalone Java application 

http://cbil.upenn.edu/STAC/ 
Multiplatform  Unknown  

MSA  
Standalone Java application or as part of GenePattern 

http://www.cbil.upenn.edu/MSA/  
Multiplatform  Unknown 

GISTIC  

Standalone based on Matlab (Component Runtime version 7.7 
needed)  

http://www.broad.mit.edu/cgi-

bin/cancer/publications/pub_paper.cgi?mode=view&paper_id=16
2 

Linux 64-bit or as part of Gene 
Pattern 

Unknown  

RAE  
R script with a standalone wrapper 

http://cbio.mskcc.org/downloads/rae/ 

Linux for the wrapper. 

 
GPL 2  

Interval Scores  

Stepgram, CNVDetector 

http://bioinfo.cs.technion.ac.il/stepgram  

http://www.csie.ntu.edu.tw/~kmchao/tools/CNVDetector/ 

Windows Unknown 

CoCoA  None    

BSA 
R scripts 

http://www.mshri.on.ca/mitacs/software/SOFTWARE.HTML 
R dependent Shareware 

pREC-A 
R package RJaCGH 

http://cran.r-project.org 
R dependent GPL 2 

pREC-S 
R package RJaCGH 

http://cran.r-project.org 
R dependent GPL 2 
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we do not require the clones in a region to be constant across 
samples.” (italics in original). Each “region” identified by 
this method is a collection of rows (clones) in the matrix of 
segmented data organized as clones by subjects. Thus a re-
gion can be used to summarize the data, as it captures a pat-
tern that remains (almost) constant over several (many) con-
tiguous clones. But, for any probe, some of the samples 
might present a gain, some others a loss, and some others 
might show no alteration. Thus, the “regions” identified do 
not represent recurrent or common patterns of copy number 
alteration over subjects (i.e., the copy number or copy num-
ber state need not be common to all, or even most, of the 
subjects). 

3.2. Master HMMs [31] 

 In [31] a single-subject Hidden Markov Model (HMM) is 
extended to simultaneously model several subjects: a “mas-
ter” sequence captures the common or recurrent pattern over 
subjects. Specific individual deviations from the master se-
quence are modeled in several different possible ways, intro-
ducing private and undefined state sequences. The HMMs, 
however, are all restricted to three hidden states (plus an 
“unidentified” state in one type of model); using only three 
hidden states, to represent just the states “loss”, “neutral”, 
“gain”, is a questionable decision [21, 32]. This approach has 
also been criticized because it “contains a biologically irrele-
vant tuning parameter” (p. 1670 in [32]). 

 A recurrent alteration identified by this approach is “(...) 
a CNA found at the same location in multiple samples” (see 
p. i450; also p. 348 in [3]); thus, the authors identify recur-
rent probes, but do not address the identification of recurrent 
regions (see also Section 4.1). The authors also state that 
their approach cannot identify subgroups, although their 
method has been extended to investigate this problem (see 
[33]). 

3.3. cghMCR [25] 

 Using segmented (i.e., smoothed data), this algorithm 
[25] first identifies altered segments within subject (those 
above the 97th or below the 3rd perdentile of the data) and 
next joins adjacent segments separated by less than 500 kb. 
Then, the algorithm identifies Minimal Common Regions, 
defined as “contiguous spans having at least 75% of the peak 
recurrence as calculated by counting the occurrence of 
highly altered segments. If two MCRs are separated by a gap 
of only one probe position they are joined.” (p. 9068). When 
measuring recurrence, a sample will count as having the al-
teration in the altered segment if its smoothed ratio is larger 
(smaller) than 0.13 (-0.13). To provide further biological 
information, the authors prioritize the MCRs based on the 
recurrence of high-amplitude alterations (p. 9069). This pa-
per was one of the first to attempt to identify recurrent re-
gions of alteration. It addresses the problems inherent in the 
structural complexity of many copy number alterations by 
considering how to define boundaries and joining contiguous 
segments, as well as emphasizing the potential relevance of 
high-amplitude alterations. The results of this approach, 
however, seem to depend strongly on parameters such as the 
gap to join segments (500 kb by default); moreover, it is 
common for this method to identify common regions that do 

not correspond to any regions of gain/loss found by individ-
ual-sample segmentation methods (personal observation).  

3.4. MAR, CMAR [28] 

 Rouveirol et al. “(...) define a recurrent region as a se-
quence of altered probes common to a set of CGH profiles 
and a minimal recurrent region as a recurrent region that 
contains no smaller recurrent regions.” (p. 849 in [28]). The 
authors then formalize these definitions and develop two 
algorithms, MAR and CMAR, for finding the minimal com-
mon regions using segmented data, not the original ratio data 
(see also Section 4.2 —an open question is whether some of 
the ideas formalized in this paper could be extended to 
smoothed data or to probabilities). This approach can detect 
regions that affect only a small fraction of the subjects (see, 
e.g., p. 854 in [28]). The description of recurrent regions 
given in the paper covers Scenarios I to IV (in Scenario V, a 
region of gain would be detected as it affects three samples). 
However, in Scenario IV, only the red and orange regions 
would be reported as minimal regions. In [28] terminology, 
the red region is a “closed subsequence” of the blue region, 
and thus the blue region cannot be a minimal region (see p. 
851 and examples 3 and 4 in [28]). 

 This is a rigorous attempt to define and detect common 
regions, but the the paper is hard to follow. One reason is the 
usage of an unjustifiably complex formalization and termi-
nology. A second reason is that the explanation of what is 
being searched for (the type of regions and why) is tangled 
with the algorithmic solutions (how to find the regions in a 
computationally efficient way). However, the methods are 
rich and flexible and can capture a variety of patterns, incor-
porating several additional user-specified constraints (num-
ber of samples that share a region, size of region, whether 
the region contains —or not— a specified observation, and 
how different a region is from surrounding probes —the 
“well bounded” criterion). In fact, these restrictions are 
likely to capture the biologically motivated ideas found in 
more recent methods such as GISTIC (see Section 3.8) and 
RAE (Section 3.9). 

 Code is not easily available from public repositories. It is 
part of the VAMP [34] program and has also been incorpo-
rated in CAPweb [35]. The VAMP implementation, in Java, 
can be requested from http: //bioinfo-out.curie.fr/proj-
ects/vamp/. There might soon be another version available 
from http: //eric.voirin.-free.fr/regions/. 

3.5. GEAR [36] 

 GEAR [36] implements several methods. The individual 
clone-based method uses as working definition of recurrent 
that a given alteration be shared by more than a pre-specified 
proportion of samples (frequency cuttoff) or be more fre-
quent than expected by chance (p-value cutoff) under a null 
model where observed alteration frequencies are position 
independent and constant over the genome. This approach is 
not suited to detect regions over unknown subsets of sam-
ples. 

 Alternatively, GEAR allows us to use a modified version 
of the SW-ARRAY method [37]: instead of analyzing the 
ratios of an array, GEAR applies SW-ARRAY to the mean 
(or the scaled mean) of the ratios over all samples. The pos-
sible advantage of this approach is that SW-ARRAY is de-
signed to detect contiguous regions, but see Section 4.1. 
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Moreover, dealing with means precludes detecting aberra-
tions common only to a small subset of samples. 

 GEAR has a nice and user-friendly interface but, unfor-
tunately, it is only available for Microsoft Windows operat-
ing systems.  

3.6. KC-SMART [29] 

 This is another method that uses a form of weighted av-
erage of amplitude of alteration by frequency over subjects 
to call a gain (or a loss) recurrent across an entire tumor set. 
The basic approach is straightforward: the positive and nega-
tive ratios are summed (separately) across tumors for each 
clone, and a kernel estimate of the density of this summation 
is determined. The kernel function used (flat top Gaussian) is 
based on the assumption that nearby probes provide more 
information than distant ones, and accounts for unequal dis-
tances between probes. To identify “relevant” peaks in that 
density, a permutation test (with Bonferroni correction for 
multiple testing) is used: first, ratios are randomly shuffled 
within tumor; next, for each permutation, positive and nega-
tive ratios are summed over tumors for each location, and the 
kernel density determined again; finally, the peaks from the 
observed data are compared to those from the kernel density 

estimates of the randomly shuffled data. By construction, 
this method is not suited to identify recurrent regions that 
affect only a small subset of subjects. 

 The user needs to specify a significance level, and it is 
necessary to use several kernel widths to detect both high-
amplitude alterations over a small region and low-amplitude 
alterations that span a large region. According to the authors, 
the usage of several kernel widths facilitates the analysis of 
complex aberrations (p. 13 in [29]). 

3.7. STAC [24] and MSA [38] 

 STAC [24] and MSA [38] are two closely related meth-
ods. STAC was developed first, and MSA can be considered 
an improvement over STAC. STAC used as input segmented 
data, and considered both the frequency of an aberration (or 
the frequency of a stretched of altered probes) and its “foot-
print” (the number of locations c such that c is contained in 
some interval of a set of intervals over samples; see p. 3 in 
[24]; or the length of the projection of a set of intervals onto 
the genome, see p. 1466 in [38]). The intuitive notion behind 
footprints is that smaller footprints are less likely to arise by 
chance, and thus such a tight alignment of aberrations might 
indicate the presence of critical genes. MSA [38] builds upon 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Relationships between methods and flow-chart of main procedures.  
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the notions of frequency and footprint but extends the 
method. First, MSA uses the original ratio data, not previ-
ously segmented data, by searching over a set of possible 
cutoff values. Second, several algorithmic and heuristic en-
hancements increase considerably the execution speed of 
MSA. In what follows, we focus on MSA. 

 In the canonical implementation, MSA (and STAC) use 
permutations of the entire regions within chromosomes (in-
stead of over the complete genome) to assess significance in 
patterns. This permutation scheme might preclude detecting 
large aberrations (see also Section 4.5). Although MSA uses 
the original ratios (not the segmented data, as STAC), for 
each probe it uses a common threshold over all arrays and 
thus ignores possible differences in variability between ar-
rays. 

 The actual size and type of region found by MSA is not 
clear. Although it is not explicit in the paper (but see docu-
mentation, http: //www.cbil.upenn.edu/MSA/doc/MSADoc.-
doc) the user of their program needs to specify the “bin-
Param”, defined as “number of positions per bin”. In other 
words, each chromosome is divided in a set of consecutive 
bins of predetermined size. A bin is regarded as altered if a 
single probe within the bin is altered –personal observation. 
In the permutations tests, entire within-sample intervals 
(where each interval spans one or more bins) are randomly 
placed in another location, so within-individual intervals are 
not broken up; (see Fig. 1) in [38]. However, the patterns of 
recurrence are reported per bin, not per interval. In this 
sense, MSA is finding “common bins”, not “common re-
gions” (see Section 4.1). In terms of scenarios, MSA should 
detect scenarios I, II, III, with the caveat that we might find 
different regions if we alter the “binParam”. As Scenario IV 

requires common regions, not just common probes, MSA 
cannot really detect this type of patterns (see Section 4.1). 

3.8. GISTIC [27, 39]  

 This method aggregates data over different tumors to 
differentiate between driver and passenger aberrations. 
Somewhat similar to RAE (see next), the method explicitly 
tries to identify “driver aberrations”, aberrations that “rise 
above the background rate of random passenger aberrations” 
(see also Section 4.5). This method involves three main 
steps: first, data-preprocessing and identification of copy 
number alterations tumor by tumor; second, data aggregation 
over tumors (computation of G-score and permutation test); 
third, identification of “peak regions”. 

 The authors use SNP arrays, and include several initial 
steps designed to minimize the effects of systematic and ran-
dom errors in the accuracy with which aberrations are identi-
fied, but the key elements of their approach can be used with 
any platform. In the description of the paper, the data are 
first segmented to obtain smoothed means (the authors origi-
nally used GLAD [40]), and a common threshold applied so 
that smoothed values below the threshold are not regarded as 
altered). In the current software implementation (ftp: 
//ftp.broadinstitute.org/pub/genepattern/modules_public_ser-
ver_doc/GISTIC.pdf) the user must input smoothed data and 
the common threshold). Next, very small segments (less than 
four probes) or datasets with high noise (lack of separate 
peaks) are discarded. The aggregation step uses a single sta-
tistic (G-score) that combines prevalence and amplitude: the 
authors explicitly assume that “(...) prevalence and average 
amplitude of these events independently indicate the likeli-
hood with which a region is affected by such driver aberra-

Table 3. Scenarios (as depicted in Fig. 1) detected by each method. For scenarios II and III, many of the methods listed could de-

tect them, provided the appropriate thresholds are modified. The entries in the table represent what seems to be the ca-

nonical or standard procedure of a method. See discussion in section 2. entries with a “? ” are discussed further in the de-

scription of each method 

 Scenarios 

Method I II III IV V VI 

CGHregions x  x  x  

Master-HMM x x x    

cghMCR x      

MAR / CMAR x x x ?    

GEAR x x x    

KC-SMART x      

STAC x x x    

MSA x x x ?    

GISTIC x      

RAE x      

Interval Scores x x x ?    

CoCoA x x x ?    

BSA x      

pREC-A x x x    

pREC-S x x x x   
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tions” (Supplementary Information text in [27]). Their com-
bined score is the prevalence of the copy-number change 
times the average amplitude. The significance of the ob-
served G-scores is evaluated with a semi-exact approxima-
tion to a permutation test (see Section 4.5). Using the signifi-
cant locations identified in the previous step, the authors 
finally try to find the most likely locations of the oncogenes 
and tumor suppressor genes, by incorporating several bio-
logical considerations: “peak regions” with maximal G-
scores and minimal p-values are selected (thus focusing only 
on regions “most frequently aberrant to the highest degree” 
[27]); independent peaks (peaks which are independently 
aberrant) are recaptured via a “peel-off” algorithm; bounda-
ries of peak regions are recomputed to eliminate shifts from 
random passenger mutations; focal aberrations are distin-
guished from broad ones (those that affect more than half a 
chromosome arm). 

 This method seems, initially, a rather complex one. How-
ever, biological considerations and assumptions enter mainly 
in steps first and third, with the second step being statisti-
cally very straightforward. The main limitations of the 
method are the computation of the G-score: it does not take 
into account inter-array variability (as it is simply the aver-
age amplitude of an aberration times its frequency), and 
equates amplitude with strength of evidence of alteration 
(see also section 4.2). In addition, in the original paper [27] 
segmentation is performed using GLAD [40]: GLAD has 
been shown to perform worse than several alternative seg-
mentation approaches [19-21], and require tunning of several 
parameters of non-intuitive meaning (but GLAD is one of 
the few segmentation methods, together with RJaCGH [21] 
and ACE [41], that explicitly attempts to classify regions as 
gained, lost, or not-altered, although this feature of GLAD is 
not used in GISTIC —see Supplementary Information text to 
[27], under “Identification of Copy-Number Aberrations”). 
GISTIC is not designed to detect regions of alteration com-
mon only to a small subset of subjects. 

3.9. RAE [42] 

 RAE [42] starts from an initial copy number assessment 
from a segmentation procedure (CBS [43, 44] in the canoni-
cal procedure) and tries to identify “genomic regions of in-
terest”. RAE uses individual tumor noise models instead of a 
single global threshold to deal with reliability in the detec-
tion of copy number alterations. (The authors emphasize 
“soft thresholding” for making more robust assessments of 
alterations in noisy systems; but it seems to us that this pro-
cedure just falls short of providing a probability assessment, 
which also avoids making a discretized, 0/1, call —see [21]–
, with the advantage that the probability assessment does not 
need to regard as equivalent amplitude and strength of evi-
dence of alteration; see Section 4.3). 

 For RAE [42], the resolution of genomic regions of inter-
est is targeted towards identifying “(...) manageable and in-
terpretable events, perhaps involving a single gene.” (p. 6, 
[42]); this objective strongly affects the rest of the procedure. 
Assessment of common regions is done initially through an 
average across samples that leads to a summary score. The 
significance of the summary score is then evaluated via a 
complex permutation test (see Section 4.5). Finally, bounda-
ries for regions of interest are located, incorporating notions 

of spatial and measurement imprecission; the end result 
should be the location of biologically relevant recurrent re-
gions of alteration common to all subjects in the study (the 
“manageable and interpretable events, perhaps involving a 
single gene”, mentioned above). 

 We find that, in contrast to many of the other methods, 
the biological assumptions and the statistical and computa-
tional approaches are too closely intertwined, which results 
in a complex method (see also Section 4.5) that can be hard 
to understand. This is further complicated because the 
method introduces several terms (e.g., unified breakpoint, 
genomic regions of interest, peak threshold) that seem cru-
cial in the development but are rarely succintly defined. 
Moreover, it is unclear how changes in the assumptions or in 
the research questions (e.g., trying to detect recurrent copy 
numbers that affect more than a single gene; encoding gains 
with more components than “single-copy gain” and “ampli-
fication”; changing the null model for the permutations) 
could be incorporated in this method. However, it might be 
precisely the tightly integrated biology + statistics that could 
make this method attractive, if the biological assumptions 
make sense to the researcher. 

3.10. Interval scores [45] and CoCoA [46] 

 These two approaches are closely related, and developed 
by the same research group. Both methods assume that the 
observed ratios are independently (and identically) distrib-
uted across the chromosome [31], a biologically unrealistic 
assumption. In addition, the procedure in [45] has been criti-
cized because “it relies in unntested parametric assumptions 
and does not make multiple testing considerations” (p. 8 in 
[24]). Both methods are capable of detecting patterns of ab-
erration over subsets of subjects, when neither the region nor 
the subsets are pre-specified (e.g., equations 6 and 7 and 
section 5.2 in [45]). But it is unclear whether patterns such as 
those in Scenario IV can be directly distinguished: "An in-
teresting aspect of the problem, which we did not attempt to 
address here, is the separation and visualization of different 
located aberrations, many of which contain significant inter-
sections” (Section 5.2 in [45]). CoCoA [46] provides, as out-
put, probabilistic scores (see pp. 127 and 128 in [46]) and 
carefully deals with the preservation of within-sample integ-
rity of patterns (see also Section 4.1). No code or program 
seems available for the methods in [46]. The method in [45] 
has been implemented in “Stepgram” (http: 
//bioinfo.cs.technion.ac.il/-stepgram/). It is also available, 
with fewer assumptions on noise distribution (but, appar-
ently, without the option for “class discovery” —location of 
regions over subsets of samples), in [47]. However, these 
two programs are only distributed as Windows executables, 
and source code in not available. 

3.11. BSA [32] 

 This method carries out segmentation and assignment of 
copy number status simultaneously using a hierarchical Bay-
esian model. Its goal is to detect a set of signal regions and 
differentiate if from the background region (the collective 
region with no copy number changes). The algorithm per-
forms a sequential segmentation based on a combination of 
marginal likelihood and Bayes factors to evaluate each can-
didate segment. 
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 The authors show through simulations that this method 
"outperforms other segmentation methods in terms of accu-
racy and power for both breakpoint detection and segmenta-
tion for recurrent CNAs using multiple samples" (p. 1674), 
although they do not compare it with methods specifically 
designed for common regions, as the ones in this review. 

 This method should detect patterns such as those of Sce-
nario I, although it should be possible to detect some indi-
vidual deviations from them, by using the Bayes factors: 
“this Bayesian approach can assign each individual a poste-
rior probability to have a CNV at a given intensity level” (p. 
1678). In general, however, to deal with more complex sce-
narios (“(...) complex architecture including smaller CNVs 
contained within larger ones, CNVs with interindividual 
breakpoints variation or CNVs with juxtaposed duplications 
and deletions within the same individuals.”) the authors ad-
vise against a joint analysis of all samples (p. 1678): “Since 
these CNVs with complex architectures are of great indi-
viduality, joint analysis using all samples will not be effec-
tive, because the individuality will be lost when information 
from multiple samples is aggregated. Applications of single 
sample methods such as CBS or our Bayesian approach by 
setting the sample size equal to one may be helpful.” 

3.12. pREC-A [48] 

 This method is also based on a Hidden Markov Model 
(HMM). Given a set of samples, it locates all regions with an 
average (average over all arrays) probability of alteration 
larger than a user selected threshold. The probabilities refer 
to the joint probability of alterations of the probes within a 
region. Therefore, this algorithm is designed for Scenario I 
and, by choosing a smaller threshold, Scenarios II and III. 
This is one of the few algorithms that uses probabilities as 
input; moreover, this algorithm has just a single parameter 
(the threshold probability) of immediate interpretation. 

3.13. pREC-S [48] 

 This algorithm is also based on a HMM. It locates all 
regions shared by at least freq.array arrays or samples given 
that each region in each array has a probability of alteration 
of at least . Note that there are two parameters here, but 
again both have immediate interpretation. pREC-S is spe-
cially suited to detect patterns such as those in Scenario IV 
(and will also detect Scenarios I, II, III). As pREC-A, this 
method deals with common regions, not probes, since the 
probability used is the joint probability of alteration of the 
complete region. 

3.14. Related approaches  

 As explained in the Introduction, this review focuses on 
methods that try to locate recurrent regions, de novo, from a 
set of arrays. There are other methods in the literature with 
different objectives that, however, present partial overlap 
with the location of recurrent CNA regions. We discuss them 
here briefly. 

 Liu and collaborators, in two papers [49, 50], focus on 
the problem of clustering subjects using aCGH data. In the 
process of clustering, markers that characterize subsets of 
samples are found. Note, however, that the methods do not 
identify regions of alteration, but rather markers that are de-
fined by a (single) position (see p. 451 in [49], where it is 

stated “Each marker is represented by two numbers <p, 
q>, where p and q denote the position and the type of aberra-
tion, respectively”). Thus, whereas these markers might be 
relevant when the focus is only clustering subjects, these 
markers do not satisfy the idea of a “recurrent region”, or 
“recurrent set of contiguous probes”. 

 Some authors [51, 52] have tried to use pre-existing in-
formation about regions that show copy number polymor-
phism to improve the search for rare copy number variants. 
Location and definition of regions, however, is not a result of 
the usage of these methods. The delimitation of copy number 
variation (CNV) regions from normal samples has been car-
ried out carefully by Komura et al. [53], who describe the 
method used to produce the first global map of copy number 
variation in the human population using the HapMap data 
[5]. A modification of SW-ARRAY [37] is used on all pos-
sible pairs of samples to extract candidate CNV regions from 
each sample; SNP information and signal ratios are inte-
grated to better define boundaries and copy number; finally, 
diploid samples are defined, (using a maximum clique algo-
rithm) for all regions and precise boundaries and copy num-
bers estimated. The details of this method are highly specific 
for one platform (the 500K EA SNP array; but should be 
applicable to other 500K Affymetrix arrays). They incorpo-
rate SNP and intensity information (again, making them spe-
cific to SNP-based date) and have been developed for nor-
mal samples. It is unclear if some of the approaches used 
here could be adapted to other platforms to detect complex 
patterns (such as those in Scenario IV) of CNA regions. 

 There has also been some work, most notably that of [54-
56] on the joint estimation of copy number alterations, so 
that instead of analyzing one array at a time, we use all ar-
rays simultaneously to improve the detection of alterations 
by using information across samples. In GADA [54], nor-
malization and estimation of copy number are carried out 
simultaneously, and complex patterns of polymorphic copy 
number variation can be dealt with (p. 1230), but finding 
common CNA regions is not an objective of the method, per 
se. Similarly, Engler et al. [56] analyze simultaneously sev-
eral arrays, but estimated parameters seem to be per-array 
(e.g., equation 4.5 in [56]), no systematic procedure is given 
to identify breakpoints or regions (p. 407) and users are to 
use visual inspection of plots. LaFramboise et al. [55] use a 
multi-sample rank-based approach to improve detection of 
boundaries and provide a working definition of region based 
on changes in p-values (but note that very common aberra-
tions might be difficult to detect; see p. 727 in [55]). The 
final results are always per array, not over the complete set 
of arrays. 

 In fact, the later is one defining characteristic of most of 
these methods: many samples are analyzed simultaneously 
yielding improved performance (in terms of segmentation, 
delimitation of boundaries or breakpoints, etc) compared to 
sample-by-sample analysis. However, the results (and, con-
sequently, output) is still per-array. In other words, the input 
data of dimensions number of arrays by number of probes is 
mapped into another matrix (or two matrices, one for gains, 
one for losses) of the same dimensions where entries are 
probabilities, p-values, or calls. But there is no decrease in 
the dimension “number of arrays”, so there is no notion of 
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“common”: for each probe there are still “number of arrays” 
entries. With these methods, therefore, if the user analyzes, 
say, 100 arrays, it is still completely up to the user to then 
define or find whatever is common over those 100 arrays 
(for instance, by post-processing the output with other tech-
niques, maybe some of the ones discussed previously). In 
summary, these are segmentation methods that use inter-
array information to improve the intra-array segmentation, 
without returning any common patterns. (Note that several of 
the methods we have discussed above, such as M-HMM 
[Section 3.2], MSA [Section 3.7], KC-SMART [Section 
3.6], BSA [Section 3.11]) also use information across arrays 
in what could be considered segmentation steps, but these 
methods do return some kind of statistic over all arrays that 
is designed to measure the degree of recurrence). 

 QuantiSNP [57] is another HMM method that can also 
borrow information across samples to improve the resolution 
of boundaries of copy number change. The scenarios covered 
would include those in I, II, III. The Bayes Factors reported 
(see equation 12 in [57]) are specific for a region; however, 
it is unclear whether the multi-sample inferences refer to 
shared regions or to shared probes (see Fig. 3 in [57]). This 
method is limited to SNP-based arrays. The recent approach 
by Wang et al. [58] also uses a HMM to locate probes that 
are lost or duplicated with high frequency compared to the 
rest of the genome, or that present a rate of loss/duplication 
that differs between pre-specified subsets of samples (see p. 
11 in [58]). As with M-HMM [31], there is no notion of re-
gion, and this paper is highly specific for the Illumina plat-
form. These two methods, thus, present the information per 
probe, not per probe times per array (e.g., see equations 7 
and 8 in [58]) and, therefore, are very similar to the method 
in M-HMM [31] (Section 3.2). 

4. COMMON ISSUES  

4.1. Recurrent Regions or Recurrent Probes? 

 Not all approaches try to locate regions, but some meth-
ods instead try only to locate common probes, without any 
notion of region. There are several reasons to try to locate 
common regions, and not just common probes: locating re-
gions facilitates summarization of information [30], can im-
prove the power of tests of association between CNAs and 

disease [59-61] as well as the integration of gene expression 
data [62, 63] (see also Section 4.9), and seems biologically 
reasonable, since most genes are interrogated by several suc-
cessive probes (so identifying a single isolated recurrent 
probe might not be biologically relevant). 

 Sometimes a recurrent region is taken to be a set of con-
secutive recurrent probes. But a set of recurrent probes does 
not necessarily represent a recurrent region. Fig. (3) illus-
trates this point. On both Fig. (3a and 3b) each of the five 
probes is altered (gained) on 60% of the samples. However, 
there is no single common region on Fig. (3a), whereas there 
are two common regions on Fig. (3b); the red region is 
common to 60% of the samples, whereas the blue one is 
common to 40% of the samples. The key difference between 
panels a) and b) is that panel b) shows patterns of “joint al-
teration”, but the patterns of joint alteration cannot be recov-
ered from the overall (marginal) frequency of alteration of 
each of the individual probes. The overall, marginal frequen-
cies, are unlikely to preserve the within-sample integrity. 
Similar examples can be constructed with smoothed data or 
probabilities instead of calls. (In fact, when considering 
probabilities, the situation is even more complicated, since 
just for a single sample or array, the joint probability that a 
set of probes is altered is rarely the same as any simple func-
tion of the marginal probability of alteration of each probe 
(see discussion in [48]). 

 This also explains why detection of regions blue and red 
in Scenario IV requires common regions and not just com-
mon probes. Unless we preserve the within-sample integrity 
(see also [46]), all we can tell is that P1 has a frequency of 
amplification of 40% and P2 and P3 of 60%, but that is not 
enough to recognize the two partially overlapping regions. 

 Finding common probes is much simple than finding 
common regions. If we are using segmented data (i.e., data 
that have been classified as either altered or non-altered, or 
gained/lost/not-changed —see also Section 4.2—), locating a 
common probe could be as immediate as identifying any 
probe that is altered (gained or lost) in more than a pre-
specified fraction of the data (and, for example, this is what 
one of the approaches in GEAR does). In Fig. (3a), for in-
stance, each of the five probes is recurrent or common if our 
threshold for recurrent is set to 60% (or less). 

 

 

 

 

 

 

 

 

Fig. (3). Comparison of “probe-by-probe” vs. “region” approach (see Section 4.1). Meaning of symbols as in Fig. (1).  
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 Only a few of the methods we have reviewed return “re-
gions” in the sense of preserving the within-sample integrity. 
CoCoA does, and its authors discuss this issue (see p. 133 in 
[46]). The methods in MAR and CMAR do keep track of the 
shapes of the rectangles and the changes in individual pat-
terns (see, for instance, the definitions of “extension”, “clo-
sure”, and “well bounded” in [28]). Any method based on 
biclustering (see Section 4.8) should also preserve the 
within-sample patterns. pREC-S and pREC-A use joint prob-
abilities of alteration of a set of successive probes within 
sample, and work with regions. CGHregions also uses re-
gions as it emphasizes dimension reduction based on homo-
geneity within sample. BSA tries to locate common regions, 
called “signal regions”, as can be seen from (Fig. 1) and 
equation 1 in [32]. 

 In contrast, Master-HMMs searches for recurrent probes: 
the authors state that “A recurrent CNA in a cohort of pa-
tients is a CNA found at the same location in multiple sam-
ples”. Thus, there is no notion of region or sequence of con-
tiguous probes. Methods that use weighted averages of in-
tensity, such as KC-SMART are also likely looking just for 
probes and can suffer from the problems in Fig. (3a): the 
smoothed density estimate in KC-SMART uses the sum of 
values over all samples (i.e., within-sample integrity of a 
pattern cannot be preserved; see equation 2 and Fig. (1) in 
[29]). In other words, regions are obtained from averages 
over all samples. Similar comments apply to GEAR: the sec-
ond method in GEAR uses SW-ARRAY on the average 
probe intensity over all arrays; the first method in GEAR 
directly thresholds each individual probe. GISTIC uses 
smoothed values, where the smoothing is based on a previ-
ous segmentation. The smoothed values, themselves, carry 
over the notion of segment. However, since the statistic G is 
computed probe by probe, problems similar to those of Fig. 
(3a) can occur. 

 MSA does not directly use probes, but rather “bins” of 
probes. The method returns, as output, confidences (1 - p-
value) for each bin. The method also provides single sample 
calls, which are obtained by finding “the tightest multiple 
sample concordance” (p. 1471 in [38]), roughly equivalent to 
finding the samples that provide maximal evidence for the 
confidences of each of those bins. It is not clear if the prob-
lems in Fig. (3a) are present, because the permutation tests 
that lead to the confidences (and, thus, also to the single 
sample calls) are based on permuting the location of entire 
within-sample intervals, not of individual bins. However, the 
method basically yields, as output, a matrix of 0s and 1s of 
dimension number of samples by number of bins, not a list 
of regions and samples in each region (actually, the method 
returns the equivalent of two matrices, one for gains and one 
for losses). Now, it is up to the user to define and find com-
mon regions in these two matrices (maybe by applying some 
other technique, such as biclustering; see Section 4.8). 
Moreover, in addition to the need for further post-processing, 
it is undefined how the confidence of consecutive bins 
should be combined to give us the confidence of a region 
(made up of those consecutive bins). In this sense, MSA re-
sembles some of the methods that borrow among-array in-
formation to make within-array calls (see discussion in Sec-
tion 3.14). 

 The working definition of region used in RAE is based 
on their notion of “unified breakpoint profile” (p. 4 and (Fig. 
3) in [42]). A unified breakpoint is the set of all breakpoints 
from all samples (i.e., the union of the breakpoints obtained 
from the segmentation conducted on every sample or array). 
A region is then the sequence of probes between two con-
secutive unified breakpoints. Most of the statistical opera-
tions (e.g., computing averages or conducting permutation 
tests) are carried out within regions. Therefore, a region in 
RAE cannot join segments that are separated by a breakpoint 
in any individual sample. However, segments that are highly 
homogeneous within many samples can be broken apart by 
the unified break point procedure, so they can end up in dif-
ferent (even if consecutive) regions. Therefore, within-
sample integrity of patterns is not preserved. 

 In summary, only a few of the methods try to locate re-
current regions. Does it matter whether we are searching for 
recurrent probes or recurrent regions? There is no definite 
answer. For some problems, locating common probes might 
be all that is needed. In some other cases, even if regions are 
ultimately the objective, locating common probes might be a 
good enough place to start the search. In other problems, 
however, it is arguable that we really are looking for recur-
rent regions in the sense of their being an underlying unit, 
with functional and biological meaning, and that has within-
individual integrity; for instance, when using regions in sub-
sequent studies of association with disease or for the integra-
tion of gene expression data (see Section 4.9). 

4.2. Segmented Data vs. Original Log Ratio Data 

 Some methods (e.g., MAR and CMAR, STAC) use, as 
input, data reduced or discretized to the values “gain”, 
“loss”, “no change”. In other words, instead of using the 
original intensity or their ratios, or the smoothed ratios (the 
“predicted” or “estimated true” values from a segmentation 
analysis), the original signal is mapped to three possible 
categories. These approaches have been critized because of 
the potentially large loss of information they entail [29], a 
problem that can be more severe in very noisy systems [42] 
and when the aCGH measurements come from heterogenous 
populations of tumor cells [29]. According to Klijn et al. 
[29], and when comparing KC-SMART with STAC, the dis-
cretization (neglecting the amplitude of the aberration) could 
lead to an increase in false positives. Note also that methods 
that use as input the segmented data implicitly assume that 
the classification of probes into states of gain/loss/no-change 
is done without error, and do not provide a way to propagate 
the uncertainty in these calls to the rest of the downstream 
analysis [48]. 

 On the other hand, using the observed intensity data 
when trying to locate common regions, as done in KC-
SMART and MSA is also open to criticisms. For instance, 
Choi et al. [64] say “(...) experimental copy number of a 
gene is not directly comparable across samples (...) every 
tumor biopsy results in a mixture of tumor and normal cells 
and the ratio of this mixture varies by sample. (...) Hence 
approaches that take the raw copy number data as measure-
ments comparable across the samples (...) may be subject to 
unexpected errors (...).” This problem probably also affects 
approaches that use smoothed data, such as GISTIC: as the 
smoothing is done per array, the smoothed values might not 
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be comparable across arrays. Note that this criticism does not 
apply to HMM-based approaches [31, 48, 57], as the HMM 
models incorporate array-to-array parameters or estimate 
probabilities per-array. RAE also uses intensity data as input, 
but the soft-discriminator model is applied per array. 

 Based on these arguments, it is arguable that the least 
problematic approach is to use probabilities, since they avoid 
the loss of information from using segmented data, and also 
avoid the non-comparability inherent in the original intensity 
data or the per-array smoothed intensity data. 

4.3. Amplitude and Strength of Evidence 

 Some methods (e.g., KC-SMART, MSA) use the original 
ratios for the computation of a statistic that should measure 
the evidence that a probe or region is altered. Thus, ampli-
tude of change ( ratio) is equated to strength of evidence: 
increase in amplitude should be reflected in monotonic in-
creases in the likelihood that a region or probe is gained (and 
similarly for decreases below a ratio of 0 and evidence of 
loss). 

 However, this mapping is not always so straightforward 
(see also cite from Choi et al. [64] in previous Section), and 
the relation between amplitude and strength of evidence 
should be mediated by the variance in the ratios, both inter-
array (e.g., the meaning of an observed is not the same in 
high-variance and low-variance arrays) and type of alteration 
and segment. This non-direct mapping is easily and implic-
itly incorporated in Hidden Markov Models [21, 31, 57, 64], 
but not with other approaches. The “soft thresholding” 
method in RAE tries to address this problem without explic-
itly returning probabilities of alteration. Using the smoothed 
(and possibly scaled between arrays) ratios, as in GISTIC or 
cghMCR, can also ameliorate this problem (since the scaled 
and smoothed ratio is more likely to have a monotonically 
increasing relation with likelihood of alteration). 

4.4. Refinements of Common Regions 

 Some authors further refine their objectives, when deal-
ing with the inherent complexities in patters of structural 
aberration, with the aim of identifying “driver mutations”, 
oncogenes, etc. Rouveirol et al. [28] define (p. 849) a 
“minimal recurrent region as a recurrent region that contains 
no smaller recurrent region” because, they argue, “the accu-
rate determination of minimal regions of chromosomal al-
terations is the first, crucial step towards the identification of 
new oncogenes and tumor suppressor genes”. A similar ob-
jective is behind the procedures applied in other methods, 
such as MSA, GISTIC, and RAE: the common regions lo-
cated are further examined and post-processed, often with 
methods much more complex than those used for locating 
common regions themselves. This post-processing often in-
corporates many more biological considerations and assump-
tions and, thus, is likely to yield more biologically-relevant 
results. For instance, notice that the straightforward scenar-
ios in Fig. (1) make no mention of possible restrictions such 
as length of a region (e.g., a few hundreds of base pairs vs. 
whole chromosome arms), location in the chromosome rela-
tive to hotspots, additional biological annotation, etc. 

 The problem of refining the search lies in the potential 
ambiguity of subsequent steps. Rouveirol et al. [28], with 
MAR and CMAR, present a complex but carefully defined 
approach, and Klijn et al. [29] use a straightforward method 

where we vary a scale parameter in a kernel smoothing func-
tion. In contrast, the authors of RAE (p. 6 in [42]) acknowl-
edge that “regions of interest are not rigorously defined, but 
are intuitive and motivated primarily by two issues. First (...) 
manageable and interpretable events, perhaps involving a 
single gene. Second (...) we see where peaks of alteration 
exist but are confounded by noisy data.” This can easily lead 
to vague and complex method descriptions, as well as algo-
rithmic implementations that are difficult to extend or mod-
ify (see also Sections 4.5 and 5). 

4.5. Null Models 

 Most methods that return p-values for the regions found 
obtain those p-values via permutation tests. To find the p-
value (how unlikely the statistic we have observed is in the 
absence of common regions), we need to generate the distri-
bution of the statistic under the null model (i.e., a scenario of 
absence of common regions). Obviously, large differences in 
the null model can lead to large differences in results. The 
problem is that there are a variety of null models in use, 
without a careful and reasoned comparison among them. 

 The null models used in STAC, MSA, KC-SMART, and 
GISTIC are relatively straightforward: the observed log2 
ratios (KC-SMART and GISTIC) or the observed intervals 
of aberration (STAC, MSA) are placed in a random location. 
(Strictly, GISTIC does not use random relocations, but a 
semi-exact approximation to the distribution of the statistic 
under a random permutation of the marker locations). How-
ever, the random relocations of regions in STAC and MSA 
are within chromosome, whereas the reshuffling of log2 ra-
tios in KC-SMART is over the whole genome (although the 
analysis in MSA can also be conducted at the genome level 
to detect whole chromosome alterations: see p. 1484 of 
[38]). Klijn et al. [29] argue that relocation over the entire 
genome is to be preferred, because relocations within chro-
mosome will prevent detecting recurrent losses or gains that 
affect whole-chromosome arms, a result that we have also 
observed. Moreover, relocating within chromosome is likely 
to penalize the detection of large aberrations: a very large 
aberration can only be randomly relocated in a small number 
of ways (i.e., the denominator of the permutation test is 
small), and most of those will have a large overlap. There-
fore, it is unlikely that we will obtain a small p-value. How-
ever, relocating an interval of aberration (and intervals of 
aberration are the “natural units” to be relocated in STAC 
and MSA) might not be possible over the genome since, for 
instance, a very large aberration in chromosome 1 would just 
simply not fit inside chromosome 22. 

 The above methods are a direct application of the usual 
statistical approach in permutation tests [65]: the null distri-
bution of the test statistic is computed conditional on random 
permutations of the observed data. In the methods above, 
under the null hypothesis of no common regions, any loca-
tion of the log2 ratios or the intervals of aberration should be 
equally likely. 

 In contrast, RAE uses a much more complicated model 
that does not simply condition on random permutations of 
the observed values but, instead, uses information about 
hostspots. This approach is motivated by the attempt to dif-
ferentiate between “tumor-associated breakpoints” and total 
breakpoints in the genome, the later being related to a “be-
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nign genetic background”. RAE’s authors therefore develop 
a model that incorporates this genetic background using re-
combination hostpots. 

 The approach in RAE might be superior to the much 
more straightforward approaches of STAC, MSA, and KC-
SMART for identifying “tumor-associated breakpoints”. The 
later methods might detect common regions that belong to 
what [42] regard as simply “benign genetic background”. 
However, the approach in RAE is not a straightforward, di-
rect, permutation test, and its justification is completely con-
tingent on their background model being an appropriate bio-
logical model. GISTIC might remind us of RAE, because of 
the incorporation of several biological considerations into 
the core of the procedure; however, the steps where those 
biological considerations are incorporated are clearly distinct 
from the permutation test step (see comments in Section 
3.8). It is interesting to note, for instance, that whereas the 
procedures of STAC, MSA, KC-SMART, and GISTIC are 
invariant to the passage of time (i.e., the p-values obtained 
today ought to be the same as those we would obtain ten 
years from now), the results of the approach in RAE are 
completely contingent on the information available about 
recombination hotspots. This feature thus highlights this ma-
jor difference: STAC, MSA, KC-SMART, and GISTIC con-
duct a typical permutation test, whereas RAE mixes the idea 
of a permutation test with the incorporation of additional 
background knowledge for the generation of the null distri-
bution of the statistic. 

 Null models and their extensions are also used to evalu-
ate the performance of methods. First, generating data under 
the null model and running a given method against the gen-
erated data will provide information on how often the 
method makes a wrong call (Type I error rate, false positive 
rate). Moreover, some papers examine the performance of 
methods (sensitivity, false negatives, power) by generating 
“true signal” relative to the null model. In other words, data 
are generated using especific deviations from the null model, 
and those data are analyzed by the method. The data thus 
generated are supposed to represent the type of data we 
would obtain when there really are common regions of al-
teration; therefore, the mechanism for data generation de-
pends crucially on what the working definition of common 
region is, and what is regarded as a reasonable model for 
locating the common and the discordant regions of copy 
number variation. An interesting example is Fig. (11B) of 
the STAC paper [38]: it is arguable that there are many 
common regions for high values of Lambda (i.e., there are 
many aberration intervals that overlap considerably in differ-
ent individuals) that are not included among the theoretical 
“true” concordant regions. And data “with signal” generated 
under a given null model might be of a very specific type, 
and very different from data “with signal” generated under a 
different null model. 

4.6. Probabilities and p-Values 

 Most methods use p-values (with correction for multiple 
testing, usually via FDR or Bonferroni) to provide a measure 
of strength of evidence that the region or probe detected is a 
real alteration or is really common. It must be rememberd, 
however, that the mapping from a p-value to a “probability 
that this region is altered” (or “probability that this region is 

commonly altered over these set of samples”) is not straight-
forward at all: a p-value measures the probability of obtain-
ing a statistic as extreme as (or more extreme than) the ob-
served one under a specific null hypothesis. Even when we 
are conducting simple, well understood, hypothesis tests, the 
mapping between a p-value and the probability of the null is 
complicated [66]. In the present case, the situation is much 
more complicated, both because the null hypotheses are of-
ten more complex (see Section 4.5) and because of the added 
layer introduced by multiple testing corrections. Moreover, 
using only p-values we cannot rank by relevance the non-
significant regions. Of the available methods for recurrent 
CNA regions, posterior probabilities of alteration of probes 
or scores directly related to those probabilities are only pro-
vided by pREC-S, pREC-A, Master-HMMs, CoCoA, and 
BSA; see also [54, 56-58] for related methods that perform 
closely related tasks using HMMs (see Section 3.14). 

4.7. Common Regions Over Subsets of Samples 

 Some complex diseases are quite heterogeneous and pre-
sent molecular subgroups [3, 67, 68]. Thus, it is often crucial 
to differentiate between two different cases. In one case, we 
consider all the samples (subjects or arrays) in the study as a 
homogeneous set of individuals, and we want to focus on the 
major, salient, patterns in the data: we will try to locate re-
gions of the genome that present a constant alteration over 
all (or most of) the samples. This is, for instance, what Sce-
nario I in Fig. (1) shows. In a second case, we suspect that 
the subjects are a heterogeneous group such as shown in 
Scenario II or Scenario IV in Fig. (1). In this case, we want 
to identify clusters or subgroups of samples that share re-
gions of the genome that present a constant alteration. In 
other words, we want to detect recurrent alterations in sub-
types of samples when we do not know in advance which are 
these recurrent alterations nor the subtypes of samples. This 
second case is arguably much more common than the first 
one in many of the diseases where CNA studies are being 
conducted [3]. In this second case, using an algorithm ap-
propriate for the first case (one that, by construction, tries to 
find alterations common to most arrays), or using settings 
(e.g., minimal frequency) that only allow finding the most 
common aberration, is clearly inappropriate: it does not an-
swer the underlying biological question, risks missing rele-
vant signals, and leads to conceptual confusion. 

4.8. Biclustering 

 It is somewhat surprising that the connection between 
finding common regions and biclustering has not been made 
explicitly more often (but see p. 853 in [28]), especially 
when one is interested in locating alterations that might be 
common only to subsets of subjects. Biclustering has been 
widely used with genomic data with the objective of identi-
fying “(...) groups of genes that show similar activity pat-
terns under a specific subset of the experimental conditions” 
(p. 2 in [69]) or “(...) sets of genes sharing compatible ex-
pression patterns across subsets of samples” (p. 1122 in 
[70]). These objectives are very similar to those of locating 
common regions of copy number alteration. Exploiting these 
similarities might prove worhtwhile given that the bicluster-
ing problem has been extensively studied (see reviews in 
[69, 70]) and that there are fast and simple reference models 
[70] that could be applied directly to the segmented data. It is 



14   Current Bioinformatics, 2010, Vol. 5, No. 1 Rueda and Diaz-Uriarte 

likely that this might require carefully considering similarity 
measures and type of linkage; work in defining linkage and 
similarity that are specific for aCGH data has been con-
ducted by Van Wieringen and colleagues [71]. 

4.9. Association with Disease and Integration of Expres-
sion Data 

 Recurrent regions of alteration (or variation) are some-
times used as input for further downstream analysis. In stud-
ies of association between disease status and copy number, 
increases in statistical power can be achieved if regions (in-
stead of single probes) are used, as shown in [59-61]. Note, 
however, that those three methods take regions as given. 
They cannot be used to define them. SIRAC [72] attempts to 
identify regions that are useful for differentiating between 
sets of tumors, and uses an operational definition that is 
completely tailored to just that objective. Thus, this method 
is not a general method for detecting common regions of 
aberration. GEAR implements two approaches for detecting 
what it regards as “class-specific alterations”; one is the 
usual and straightforward comparison of the frequency of 
aberrations between two pre-specified classes using Fisher’s 
test, and the second uses SW-ARRAY [37] on the mean dif-
ference between the two groups. 

 Since many studies of recurrent CNA regions are carried 
out with the ultimate purpose of relating CNA to disease, 
this area is open for much further work. First, in terms of 
Fig. (1), it needs to be clarified what type of pattern of recur-
rent CNA we want to detect when studying association with 
disease. Initially, we will probably want to focus on Scenar-
ios II, III and V. Scenarios IV and VI are likely too complex 
(at least initially), and Scenario I is obviously unrelated to 
differential phenotype if all samples show the CNA. Second, 
the search for recurrent regions can be carried out before the 
association analysis or simultaneously. SIRAC takes the sec-
ond approach, but the statistical method used is too simple 
for most case-control studies or with continuous dependent 
variables (i.e., the statistical method in SIRAC, SAM, does 
not allow the rich modelling available in both CNVassoc 
[59] and CNVtools [60]). The first method in GEAR is a 
common one in the literature, is not related to regions (it is a 
probe-by-probe approach), only allows very simple statisti-
cal models, and can be severely affected by uncertainties in 
the aberration calls [59]. The second approach in GEAR is 
conceptually not very different from the approach in SIRAC: 
differences between groups in the signal are computed first, 
and then a method is applied to search for “regions” in those 
differences (p-values in the case of SIRAC). As before, only 
very simple statistical models can be fitted, and it is unclear 
that the “regions” found are really regions since they are 
regions from averages over subjects (see Section 4.1). 

 Likewise, many studies have attempted to assess the ef-
fects of changes in genomic DNA copy number on gene ex-
pression. VanWier et al. [62] developed two statistics to 
carry out “regional analysis” because “We (...) expect analy-
sis that takes regional effects into account to yield better re-
sults that might offset the negative effects of noise in the 
data or low penetrance.” (p. 5 in [62]) and “(...) low pene-
trance (not all cells in the sample) and low prevalence (not 
all samples in the study) alterations might affect expression 
below the 2-fold mark and only in some of the samples, but 

in a significant manner when a genomic region is consid-
ered.” (p. 2 in [62]). These authors do report improved per-
formance from using regional analysis with pre-defined re-
gion as found by CGHregions [30]. Thus, regions are taken 
as given, and the association between copy number and gene 
expression is examined with weighted test statistics (with 
shrinkage) applied over regions. A similar effect is reported 
in Lipson et al. [63] using a simple average correlation over 
regions. In this paper, another method (GCSM) is developed: 
the authors search for submatrices of the data that contain 
amplified (deleted) genes and over-expressed (repressed) 
genes; thus, in this second method, regions are not taken as 
given, but rather searched for so as to maximize association 
with expression data. 

4.10. Comparisons Among Methods 

 There is no comprehensive comparison of the different 
approaches, and very few of the published papers present 
any comparison with other methods (but see [29] for com-
parisons between KC-SMART and STAC, [38] for compari-
sons between MSA and STAC, and [42] for comparisons 
between RAE and GISTIC). Carrying out these comparisons 
is difficult because of some issues already mentioned:  

• The meaning of common region is vague, and different 
methods have different objectives and types of regions 
they will detect. Thus, it is unclear how to define a metric 
to measure performance. For instance, many method 
comparisons are not meaningful if we are interested in 
detecting Scenario IV. 

• Some methods depend strongly on specific null models. 
Since settling down which of the null models is the cor-
rect one is unlikely to happen soon, comparison ought to 
be done using several of the proposed null models. 

• There are no real reference data sets that can be used as 
gold standards; any comparisons using real data will, 
thus, always be incomplete and inconclussive (are the de-
tected patterns real? are the undetected patterns just not 
there? ).  

 In spite of those difficulties, however, the field is ready 
for such a comprehensive, careful, comparison of the relative 
strengths of methods using a variety of simulated data sets. 
Only by using carefully planned simulation studies can we 
get an idea of which methods are likely to perform better 
with any given real data set. It is worth noting that similar 
comments have been recently made by Shah [3]. 

4.11. Code Availability and Code Licenses 

 Several of the methods do not have code available. We 
find this a most unfortunate situation, since a method without 
code is, basically, a method that will remain unused: given 
that there are many competing approaches, it is unlikely 
anybody will implement a method that someone else has 
developed. Claiming “software available upon request from 
the authors”, or similar formulas is, often, a red flag that 
software is not really available, or is only available in a diffi-
cult to use form. We emphatically suggest to reviewers and 
editors to require that code be publicly available for any new 
method published, if that method is to have any chance of 
making a difference and being used by other researchers. Of 
course, when we say “code” we mean not only an executable 
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but, most importantly, the source code. Only the source code 
allows researchers to extend the method, detect and fix bugs, 
and know what an implementation is really doing [73-75]). 

 Some methods are only available for Matlab. Again, this 
is often unfortunate, since it makes the method inaccessible 
to researchers that do not have a Matlab license. While it is 
true that developers can distribute stand-alone Matlab appli-
cations, this precludes modifying, improving, and debugging 
the code, which are some of the key advantages of having 
the source code available, and a definite need in Bioinfor-
matics [73, 75]. Similarly, some methods are only available 
as Windows executables, precluding their usage under other 
operating systems. This is particularly unfortunate since 
many clusters and high-performance workstations run 
GNU/Linux and Unix operating systems. In terms of R 
packages, authors and editors are strongly encouraged to 
have the R packages deposited in either CRAN or BioCon-
ductor. This ensures both that the package will remain avail-
able regardless of what happens to the authors’ personal web 
pages, and provides additional quality control checks. 

 Finally, licenses are often times not specified. We do 
have a strong preference for free software licenses, for rea-
sons articulated elsewhere by us and by others [73-75]. Re-
gardless of the type of license, it must be clearly spelled out: 
lack of a license hinders using, modifying, and further de-
veloping a method, since it is unclear for any prospective 
developer whether changes to a code base can be further 
distributed, and what are the terms of usage of the output of 
the program. 

5. FURTHER WORK 

 To summarize, we think there are several areas where 
further work is needed. First, we need a clear delineation 
between the statistical and computational steps and the bio-
logical assumptions and ultimate objectives. In terms of the 
Scenarios in Fig. (1), it is rarely explicit what is ultimate 
biological objective of many methods and, therefore, it is 
difficult to choose a method based on a specified objective. 
In addition, some current procedures are very difficult to 
modify and adapt, since the statistical approaches and bio-
logical assumptions are intertwined in a convoluted way (see 
also Section 4.5). Likewise, we need a clear delineation be-
tween the type of patterns we want to detect (what is a com-
mon region, why we regard that pattern as a biologically 
relevant one) and how those patterns are to be detected (the 
algorithmic solution). A biologist needs to be able to assess 
whether a given method detects a pattern she or he is inter-
ested in, without having to plod through an algorithm. 

 Second, and as discussed in Section 4.2, probabilities do 
not suffer from either discarding information or mixing non-
comparable intensity ratios. Probabilities also do not con-
found amplitude and strength of evidence (Section 4.3), and 
output in terms of probabilities of alteration is directly inter-
pretable (Sections 4.6). Therefore, methods that use prob-
abilities, both as input and as output, would be conveniently 
suited for finding recurrent regions. 

 Third, choice of a method for finding recurrent CNA 
regions should depend on the intended usage of the detected 
recurrent CNA regions but, so far, there is very little work on 
carefully matching intended usage to method for finding 

recurrent CNA regions. If the detected regions are to be used 
to cluster individuals, investigation of biclustering ap-
proaches are likely to be fruitful (see Section 4.8). In con-
trast, if recurrent regions are to be used to study the associa-
tion of disease with CNAs, or the impact of CNAs on gene 
expression data, then other types of methods and biological 
scenarios in terms of Fig. (1) might be needed (see Section 
4.9). 

 Finally, comprehensive, through comparisons, of per-
formance of different methods under different scenarios are 
missing (see Section 4.10), making it hard to base choice on 
the actual performance of different approaches. Of course, 
method comparison makes sense only after the intended us-
age and the scenarios are well defined. 
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